Spaces:
Build error
Build error
| import inspect | |
| from typing import Callable, List, Optional, Union | |
| import torch | |
| from transformers import ( | |
| CLIPImageProcessor, | |
| CLIPTextModel, | |
| CLIPTokenizer, | |
| WhisperForConditionalGeneration, | |
| WhisperProcessor, | |
| ) | |
| from diffusers import ( | |
| AutoencoderKL, | |
| DDIMScheduler, | |
| DiffusionPipeline, | |
| LMSDiscreteScheduler, | |
| PNDMScheduler, | |
| UNet2DConditionModel, | |
| ) | |
| from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput | |
| from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker | |
| from diffusers.utils import logging | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| class SpeechToImagePipeline(DiffusionPipeline): | |
| def __init__( | |
| self, | |
| speech_model: WhisperForConditionalGeneration, | |
| speech_processor: WhisperProcessor, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModel, | |
| tokenizer: CLIPTokenizer, | |
| unet: UNet2DConditionModel, | |
| scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], | |
| safety_checker: StableDiffusionSafetyChecker, | |
| feature_extractor: CLIPImageProcessor, | |
| ): | |
| super().__init__() | |
| if safety_checker is None: | |
| logger.warning( | |
| f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" | |
| " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" | |
| " results in services or applications open to the public. Both the diffusers team and Hugging Face" | |
| " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" | |
| " it only for use-cases that involve analyzing network behavior or auditing its results. For more" | |
| " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." | |
| ) | |
| self.register_modules( | |
| speech_model=speech_model, | |
| speech_processor=speech_processor, | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| unet=unet, | |
| scheduler=scheduler, | |
| feature_extractor=feature_extractor, | |
| ) | |
| def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"): | |
| if slice_size == "auto": | |
| slice_size = self.unet.config.attention_head_dim // 2 | |
| self.unet.set_attention_slice(slice_size) | |
| def disable_attention_slicing(self): | |
| self.enable_attention_slicing(None) | |
| def __call__( | |
| self, | |
| audio, | |
| sampling_rate=16_000, | |
| height: int = 512, | |
| width: int = 512, | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 7.5, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[torch.Generator] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
| callback_steps: int = 1, | |
| **kwargs, | |
| ): | |
| inputs = self.speech_processor.feature_extractor( | |
| audio, return_tensors="pt", sampling_rate=sampling_rate | |
| ).input_features.to(self.device) | |
| predicted_ids = self.speech_model.generate(inputs, max_length=480_000) | |
| prompt = self.speech_processor.tokenizer.batch_decode(predicted_ids, skip_special_tokens=True, normalize=True)[ | |
| 0 | |
| ] | |
| if isinstance(prompt, str): | |
| batch_size = 1 | |
| elif isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| if height % 8 != 0 or width % 8 != 0: | |
| raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
| if (callback_steps is None) or ( | |
| callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
| ): | |
| raise ValueError( | |
| f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
| f" {type(callback_steps)}." | |
| ) | |
| # get prompt text embeddings | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.tokenizer.model_max_length, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| if text_input_ids.shape[-1] > self.tokenizer.model_max_length: | |
| removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :]) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
| ) | |
| text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length] | |
| text_embeddings = self.text_encoder(text_input_ids.to(self.device))[0] | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| bs_embed, seq_len, _ = text_embeddings.shape | |
| text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1) | |
| text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # get unconditional embeddings for classifier free guidance | |
| if do_classifier_free_guidance: | |
| uncond_tokens: List[str] | |
| if negative_prompt is None: | |
| uncond_tokens = [""] * batch_size | |
| elif type(prompt) is not type(negative_prompt): | |
| raise TypeError( | |
| f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
| f" {type(prompt)}." | |
| ) | |
| elif isinstance(negative_prompt, str): | |
| uncond_tokens = [negative_prompt] | |
| elif batch_size != len(negative_prompt): | |
| raise ValueError( | |
| f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
| f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
| " the batch size of `prompt`." | |
| ) | |
| else: | |
| uncond_tokens = negative_prompt | |
| max_length = text_input_ids.shape[-1] | |
| uncond_input = self.tokenizer( | |
| uncond_tokens, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0] | |
| # duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
| seq_len = uncond_embeddings.shape[1] | |
| uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt, 1) | |
| uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) | |
| # get the initial random noise unless the user supplied it | |
| # Unlike in other pipelines, latents need to be generated in the target device | |
| # for 1-to-1 results reproducibility with the CompVis implementation. | |
| # However this currently doesn't work in `mps`. | |
| latents_shape = (batch_size * num_images_per_prompt, self.unet.in_channels, height // 8, width // 8) | |
| latents_dtype = text_embeddings.dtype | |
| if latents is None: | |
| if self.device.type == "mps": | |
| # randn does not exist on mps | |
| latents = torch.randn(latents_shape, generator=generator, device="cpu", dtype=latents_dtype).to( | |
| self.device | |
| ) | |
| else: | |
| latents = torch.randn(latents_shape, generator=generator, device=self.device, dtype=latents_dtype) | |
| else: | |
| if latents.shape != latents_shape: | |
| raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") | |
| latents = latents.to(self.device) | |
| # set timesteps | |
| self.scheduler.set_timesteps(num_inference_steps) | |
| # Some schedulers like PNDM have timesteps as arrays | |
| # It's more optimized to move all timesteps to correct device beforehand | |
| timesteps_tensor = self.scheduler.timesteps.to(self.device) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| latents = latents * self.scheduler.init_noise_sigma | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| for i, t in enumerate(self.progress_bar(timesteps_tensor)): | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| # predict the noise residual | |
| noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
| # call the callback, if provided | |
| if callback is not None and i % callback_steps == 0: | |
| callback(i, t, latents) | |
| latents = 1 / 0.18215 * latents | |
| image = self.vae.decode(latents).sample | |
| image = (image / 2 + 0.5).clamp(0, 1) | |
| # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 | |
| image = image.cpu().permute(0, 2, 3, 1).float().numpy() | |
| if output_type == "pil": | |
| image = self.numpy_to_pil(image) | |
| if not return_dict: | |
| return image | |
| return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=None) | |