Spaces:
Build error
Build error
| # coding=utf-8 | |
| # Copyright 2023 The HuggingFace Inc. team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ Conversion script for the LDM checkpoints. """ | |
| import argparse | |
| import torch | |
| from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument( | |
| "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." | |
| ) | |
| # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml | |
| parser.add_argument( | |
| "--original_config_file", | |
| default=None, | |
| type=str, | |
| help="The YAML config file corresponding to the original architecture.", | |
| ) | |
| parser.add_argument( | |
| "--num_in_channels", | |
| default=None, | |
| type=int, | |
| help="The number of input channels. If `None` number of input channels will be automatically inferred.", | |
| ) | |
| parser.add_argument( | |
| "--scheduler_type", | |
| default="pndm", | |
| type=str, | |
| help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']", | |
| ) | |
| parser.add_argument( | |
| "--pipeline_type", | |
| default=None, | |
| type=str, | |
| help=( | |
| "The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'" | |
| ". If `None` pipeline will be automatically inferred." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--image_size", | |
| default=None, | |
| type=int, | |
| help=( | |
| "The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2" | |
| " Base. Use 768 for Stable Diffusion v2." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--prediction_type", | |
| default=None, | |
| type=str, | |
| help=( | |
| "The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable" | |
| " Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--extract_ema", | |
| action="store_true", | |
| help=( | |
| "Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" | |
| " or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" | |
| " higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--upcast_attention", | |
| action="store_true", | |
| help=( | |
| "Whether the attention computation should always be upcasted. This is necessary when running stable" | |
| " diffusion 2.1." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--from_safetensors", | |
| action="store_true", | |
| help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.", | |
| ) | |
| parser.add_argument( | |
| "--to_safetensors", | |
| action="store_true", | |
| help="Whether to store pipeline in safetensors format or not.", | |
| ) | |
| parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") | |
| parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") | |
| parser.add_argument( | |
| "--stable_unclip", | |
| type=str, | |
| default=None, | |
| required=False, | |
| help="Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.", | |
| ) | |
| parser.add_argument( | |
| "--stable_unclip_prior", | |
| type=str, | |
| default=None, | |
| required=False, | |
| help="Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.", | |
| ) | |
| parser.add_argument( | |
| "--clip_stats_path", | |
| type=str, | |
| help="Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.", | |
| required=False, | |
| ) | |
| parser.add_argument( | |
| "--controlnet", action="store_true", default=None, help="Set flag if this is a controlnet checkpoint." | |
| ) | |
| parser.add_argument("--half", action="store_true", help="Save weights in half precision.") | |
| args = parser.parse_args() | |
| pipe = download_from_original_stable_diffusion_ckpt( | |
| checkpoint_path=args.checkpoint_path, | |
| original_config_file=args.original_config_file, | |
| image_size=args.image_size, | |
| prediction_type=args.prediction_type, | |
| model_type=args.pipeline_type, | |
| extract_ema=args.extract_ema, | |
| scheduler_type=args.scheduler_type, | |
| num_in_channels=args.num_in_channels, | |
| upcast_attention=args.upcast_attention, | |
| from_safetensors=args.from_safetensors, | |
| device=args.device, | |
| stable_unclip=args.stable_unclip, | |
| stable_unclip_prior=args.stable_unclip_prior, | |
| clip_stats_path=args.clip_stats_path, | |
| controlnet=args.controlnet, | |
| ) | |
| if args.half: | |
| pipe.to(torch_dtype=torch.float16) | |
| if args.controlnet: | |
| # only save the controlnet model | |
| pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) | |
| else: | |
| pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) | |