Spaces:
Running
on
Zero
Running
on
Zero
| # coding=utf-8 | |
| # Copyright 2023 The HuggingFace Inc. team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ Conversion script for the Versatile Stable Diffusion checkpoints. """ | |
| import argparse | |
| from argparse import Namespace | |
| import torch | |
| from transformers import ( | |
| CLIPImageProcessor, | |
| CLIPTextModelWithProjection, | |
| CLIPTokenizer, | |
| CLIPVisionModelWithProjection, | |
| ) | |
| from diffusers import ( | |
| AutoencoderKL, | |
| DDIMScheduler, | |
| DPMSolverMultistepScheduler, | |
| EulerAncestralDiscreteScheduler, | |
| EulerDiscreteScheduler, | |
| LMSDiscreteScheduler, | |
| PNDMScheduler, | |
| UNet2DConditionModel, | |
| VersatileDiffusionPipeline, | |
| ) | |
| from diffusers.pipelines.versatile_diffusion.modeling_text_unet import UNetFlatConditionModel | |
| SCHEDULER_CONFIG = Namespace( | |
| **{ | |
| "beta_linear_start": 0.00085, | |
| "beta_linear_end": 0.012, | |
| "timesteps": 1000, | |
| "scale_factor": 0.18215, | |
| } | |
| ) | |
| IMAGE_UNET_CONFIG = Namespace( | |
| **{ | |
| "input_channels": 4, | |
| "model_channels": 320, | |
| "output_channels": 4, | |
| "num_noattn_blocks": [2, 2, 2, 2], | |
| "channel_mult": [1, 2, 4, 4], | |
| "with_attn": [True, True, True, False], | |
| "num_heads": 8, | |
| "context_dim": 768, | |
| "use_checkpoint": True, | |
| } | |
| ) | |
| TEXT_UNET_CONFIG = Namespace( | |
| **{ | |
| "input_channels": 768, | |
| "model_channels": 320, | |
| "output_channels": 768, | |
| "num_noattn_blocks": [2, 2, 2, 2], | |
| "channel_mult": [1, 2, 4, 4], | |
| "second_dim": [4, 4, 4, 4], | |
| "with_attn": [True, True, True, False], | |
| "num_heads": 8, | |
| "context_dim": 768, | |
| "use_checkpoint": True, | |
| } | |
| ) | |
| AUTOENCODER_CONFIG = Namespace( | |
| **{ | |
| "double_z": True, | |
| "z_channels": 4, | |
| "resolution": 256, | |
| "in_channels": 3, | |
| "out_ch": 3, | |
| "ch": 128, | |
| "ch_mult": [1, 2, 4, 4], | |
| "num_res_blocks": 2, | |
| "attn_resolutions": [], | |
| "dropout": 0.0, | |
| } | |
| ) | |
| def shave_segments(path, n_shave_prefix_segments=1): | |
| """ | |
| Removes segments. Positive values shave the first segments, negative shave the last segments. | |
| """ | |
| if n_shave_prefix_segments >= 0: | |
| return ".".join(path.split(".")[n_shave_prefix_segments:]) | |
| else: | |
| return ".".join(path.split(".")[:n_shave_prefix_segments]) | |
| def renew_resnet_paths(old_list, n_shave_prefix_segments=0): | |
| """ | |
| Updates paths inside resnets to the new naming scheme (local renaming) | |
| """ | |
| mapping = [] | |
| for old_item in old_list: | |
| new_item = old_item.replace("in_layers.0", "norm1") | |
| new_item = new_item.replace("in_layers.2", "conv1") | |
| new_item = new_item.replace("out_layers.0", "norm2") | |
| new_item = new_item.replace("out_layers.3", "conv2") | |
| new_item = new_item.replace("emb_layers.1", "time_emb_proj") | |
| new_item = new_item.replace("skip_connection", "conv_shortcut") | |
| new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) | |
| mapping.append({"old": old_item, "new": new_item}) | |
| return mapping | |
| def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0): | |
| """ | |
| Updates paths inside resnets to the new naming scheme (local renaming) | |
| """ | |
| mapping = [] | |
| for old_item in old_list: | |
| new_item = old_item | |
| new_item = new_item.replace("nin_shortcut", "conv_shortcut") | |
| new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) | |
| mapping.append({"old": old_item, "new": new_item}) | |
| return mapping | |
| def renew_attention_paths(old_list, n_shave_prefix_segments=0): | |
| """ | |
| Updates paths inside attentions to the new naming scheme (local renaming) | |
| """ | |
| mapping = [] | |
| for old_item in old_list: | |
| new_item = old_item | |
| # new_item = new_item.replace('norm.weight', 'group_norm.weight') | |
| # new_item = new_item.replace('norm.bias', 'group_norm.bias') | |
| # new_item = new_item.replace('proj_out.weight', 'proj_attn.weight') | |
| # new_item = new_item.replace('proj_out.bias', 'proj_attn.bias') | |
| # new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) | |
| mapping.append({"old": old_item, "new": new_item}) | |
| return mapping | |
| def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0): | |
| """ | |
| Updates paths inside attentions to the new naming scheme (local renaming) | |
| """ | |
| mapping = [] | |
| for old_item in old_list: | |
| new_item = old_item | |
| new_item = new_item.replace("norm.weight", "group_norm.weight") | |
| new_item = new_item.replace("norm.bias", "group_norm.bias") | |
| new_item = new_item.replace("q.weight", "query.weight") | |
| new_item = new_item.replace("q.bias", "query.bias") | |
| new_item = new_item.replace("k.weight", "key.weight") | |
| new_item = new_item.replace("k.bias", "key.bias") | |
| new_item = new_item.replace("v.weight", "value.weight") | |
| new_item = new_item.replace("v.bias", "value.bias") | |
| new_item = new_item.replace("proj_out.weight", "proj_attn.weight") | |
| new_item = new_item.replace("proj_out.bias", "proj_attn.bias") | |
| new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) | |
| mapping.append({"old": old_item, "new": new_item}) | |
| return mapping | |
| def assign_to_checkpoint( | |
| paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None | |
| ): | |
| """ | |
| This does the final conversion step: take locally converted weights and apply a global renaming | |
| to them. It splits attention layers, and takes into account additional replacements | |
| that may arise. | |
| Assigns the weights to the new checkpoint. | |
| """ | |
| assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys." | |
| # Splits the attention layers into three variables. | |
| if attention_paths_to_split is not None: | |
| for path, path_map in attention_paths_to_split.items(): | |
| old_tensor = old_checkpoint[path] | |
| channels = old_tensor.shape[0] // 3 | |
| target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1) | |
| num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3 | |
| old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:]) | |
| query, key, value = old_tensor.split(channels // num_heads, dim=1) | |
| checkpoint[path_map["query"]] = query.reshape(target_shape) | |
| checkpoint[path_map["key"]] = key.reshape(target_shape) | |
| checkpoint[path_map["value"]] = value.reshape(target_shape) | |
| for path in paths: | |
| new_path = path["new"] | |
| # These have already been assigned | |
| if attention_paths_to_split is not None and new_path in attention_paths_to_split: | |
| continue | |
| # Global renaming happens here | |
| new_path = new_path.replace("middle_block.0", "mid_block.resnets.0") | |
| new_path = new_path.replace("middle_block.1", "mid_block.attentions.0") | |
| new_path = new_path.replace("middle_block.2", "mid_block.resnets.1") | |
| if additional_replacements is not None: | |
| for replacement in additional_replacements: | |
| new_path = new_path.replace(replacement["old"], replacement["new"]) | |
| # proj_attn.weight has to be converted from conv 1D to linear | |
| if "proj_attn.weight" in new_path: | |
| checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0] | |
| elif path["old"] in old_checkpoint: | |
| checkpoint[new_path] = old_checkpoint[path["old"]] | |
| def conv_attn_to_linear(checkpoint): | |
| keys = list(checkpoint.keys()) | |
| attn_keys = ["query.weight", "key.weight", "value.weight"] | |
| for key in keys: | |
| if ".".join(key.split(".")[-2:]) in attn_keys: | |
| if checkpoint[key].ndim > 2: | |
| checkpoint[key] = checkpoint[key][:, :, 0, 0] | |
| elif "proj_attn.weight" in key: | |
| if checkpoint[key].ndim > 2: | |
| checkpoint[key] = checkpoint[key][:, :, 0] | |
| def create_image_unet_diffusers_config(unet_params): | |
| """ | |
| Creates a config for the diffusers based on the config of the VD model. | |
| """ | |
| block_out_channels = [unet_params.model_channels * mult for mult in unet_params.channel_mult] | |
| down_block_types = [] | |
| resolution = 1 | |
| for i in range(len(block_out_channels)): | |
| block_type = "CrossAttnDownBlock2D" if unet_params.with_attn[i] else "DownBlock2D" | |
| down_block_types.append(block_type) | |
| if i != len(block_out_channels) - 1: | |
| resolution *= 2 | |
| up_block_types = [] | |
| for i in range(len(block_out_channels)): | |
| block_type = "CrossAttnUpBlock2D" if unet_params.with_attn[-i - 1] else "UpBlock2D" | |
| up_block_types.append(block_type) | |
| resolution //= 2 | |
| if not all(n == unet_params.num_noattn_blocks[0] for n in unet_params.num_noattn_blocks): | |
| raise ValueError("Not all num_res_blocks are equal, which is not supported in this script.") | |
| config = { | |
| "sample_size": None, | |
| "in_channels": unet_params.input_channels, | |
| "out_channels": unet_params.output_channels, | |
| "down_block_types": tuple(down_block_types), | |
| "up_block_types": tuple(up_block_types), | |
| "block_out_channels": tuple(block_out_channels), | |
| "layers_per_block": unet_params.num_noattn_blocks[0], | |
| "cross_attention_dim": unet_params.context_dim, | |
| "attention_head_dim": unet_params.num_heads, | |
| } | |
| return config | |
| def create_text_unet_diffusers_config(unet_params): | |
| """ | |
| Creates a config for the diffusers based on the config of the VD model. | |
| """ | |
| block_out_channels = [unet_params.model_channels * mult for mult in unet_params.channel_mult] | |
| down_block_types = [] | |
| resolution = 1 | |
| for i in range(len(block_out_channels)): | |
| block_type = "CrossAttnDownBlockFlat" if unet_params.with_attn[i] else "DownBlockFlat" | |
| down_block_types.append(block_type) | |
| if i != len(block_out_channels) - 1: | |
| resolution *= 2 | |
| up_block_types = [] | |
| for i in range(len(block_out_channels)): | |
| block_type = "CrossAttnUpBlockFlat" if unet_params.with_attn[-i - 1] else "UpBlockFlat" | |
| up_block_types.append(block_type) | |
| resolution //= 2 | |
| if not all(n == unet_params.num_noattn_blocks[0] for n in unet_params.num_noattn_blocks): | |
| raise ValueError("Not all num_res_blocks are equal, which is not supported in this script.") | |
| config = { | |
| "sample_size": None, | |
| "in_channels": (unet_params.input_channels, 1, 1), | |
| "out_channels": (unet_params.output_channels, 1, 1), | |
| "down_block_types": tuple(down_block_types), | |
| "up_block_types": tuple(up_block_types), | |
| "block_out_channels": tuple(block_out_channels), | |
| "layers_per_block": unet_params.num_noattn_blocks[0], | |
| "cross_attention_dim": unet_params.context_dim, | |
| "attention_head_dim": unet_params.num_heads, | |
| } | |
| return config | |
| def create_vae_diffusers_config(vae_params): | |
| """ | |
| Creates a config for the diffusers based on the config of the VD model. | |
| """ | |
| block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult] | |
| down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels) | |
| up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels) | |
| config = { | |
| "sample_size": vae_params.resolution, | |
| "in_channels": vae_params.in_channels, | |
| "out_channels": vae_params.out_ch, | |
| "down_block_types": tuple(down_block_types), | |
| "up_block_types": tuple(up_block_types), | |
| "block_out_channels": tuple(block_out_channels), | |
| "latent_channels": vae_params.z_channels, | |
| "layers_per_block": vae_params.num_res_blocks, | |
| } | |
| return config | |
| def create_diffusers_scheduler(original_config): | |
| schedular = DDIMScheduler( | |
| num_train_timesteps=original_config.model.params.timesteps, | |
| beta_start=original_config.model.params.linear_start, | |
| beta_end=original_config.model.params.linear_end, | |
| beta_schedule="scaled_linear", | |
| ) | |
| return schedular | |
| def convert_vd_unet_checkpoint(checkpoint, config, unet_key, extract_ema=False): | |
| """ | |
| Takes a state dict and a config, and returns a converted checkpoint. | |
| """ | |
| # extract state_dict for UNet | |
| unet_state_dict = {} | |
| keys = list(checkpoint.keys()) | |
| # at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA | |
| if sum(k.startswith("model_ema") for k in keys) > 100: | |
| print("Checkpoint has both EMA and non-EMA weights.") | |
| if extract_ema: | |
| print( | |
| "In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA" | |
| " weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag." | |
| ) | |
| for key in keys: | |
| if key.startswith("model.diffusion_model"): | |
| flat_ema_key = "model_ema." + "".join(key.split(".")[1:]) | |
| unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(flat_ema_key) | |
| else: | |
| print( | |
| "In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA" | |
| " weights (usually better for inference), please make sure to add the `--extract_ema` flag." | |
| ) | |
| for key in keys: | |
| if key.startswith(unet_key): | |
| unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key) | |
| new_checkpoint = {} | |
| new_checkpoint["time_embedding.linear_1.weight"] = checkpoint["model.diffusion_model.time_embed.0.weight"] | |
| new_checkpoint["time_embedding.linear_1.bias"] = checkpoint["model.diffusion_model.time_embed.0.bias"] | |
| new_checkpoint["time_embedding.linear_2.weight"] = checkpoint["model.diffusion_model.time_embed.2.weight"] | |
| new_checkpoint["time_embedding.linear_2.bias"] = checkpoint["model.diffusion_model.time_embed.2.bias"] | |
| new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"] | |
| new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"] | |
| new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"] | |
| new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"] | |
| new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"] | |
| new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"] | |
| # Retrieves the keys for the input blocks only | |
| num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer}) | |
| input_blocks = { | |
| layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key] | |
| for layer_id in range(num_input_blocks) | |
| } | |
| # Retrieves the keys for the middle blocks only | |
| num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer}) | |
| middle_blocks = { | |
| layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key] | |
| for layer_id in range(num_middle_blocks) | |
| } | |
| # Retrieves the keys for the output blocks only | |
| num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer}) | |
| output_blocks = { | |
| layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key] | |
| for layer_id in range(num_output_blocks) | |
| } | |
| for i in range(1, num_input_blocks): | |
| block_id = (i - 1) // (config["layers_per_block"] + 1) | |
| layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1) | |
| resnets = [ | |
| key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key | |
| ] | |
| attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key] | |
| if f"input_blocks.{i}.0.op.weight" in unet_state_dict: | |
| new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop( | |
| f"input_blocks.{i}.0.op.weight" | |
| ) | |
| new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop( | |
| f"input_blocks.{i}.0.op.bias" | |
| ) | |
| elif f"input_blocks.{i}.0.weight" in unet_state_dict: | |
| # text_unet uses linear layers in place of downsamplers | |
| shape = unet_state_dict[f"input_blocks.{i}.0.weight"].shape | |
| if shape[0] != shape[1]: | |
| continue | |
| new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.weight"] = unet_state_dict.pop( | |
| f"input_blocks.{i}.0.weight" | |
| ) | |
| new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.bias"] = unet_state_dict.pop( | |
| f"input_blocks.{i}.0.bias" | |
| ) | |
| paths = renew_resnet_paths(resnets) | |
| meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"} | |
| assign_to_checkpoint( | |
| paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config | |
| ) | |
| if len(attentions): | |
| paths = renew_attention_paths(attentions) | |
| meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"} | |
| assign_to_checkpoint( | |
| paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config | |
| ) | |
| resnet_0 = middle_blocks[0] | |
| attentions = middle_blocks[1] | |
| resnet_1 = middle_blocks[2] | |
| resnet_0_paths = renew_resnet_paths(resnet_0) | |
| assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config) | |
| resnet_1_paths = renew_resnet_paths(resnet_1) | |
| assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config) | |
| attentions_paths = renew_attention_paths(attentions) | |
| meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"} | |
| assign_to_checkpoint( | |
| attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config | |
| ) | |
| for i in range(num_output_blocks): | |
| block_id = i // (config["layers_per_block"] + 1) | |
| layer_in_block_id = i % (config["layers_per_block"] + 1) | |
| output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]] | |
| output_block_list = {} | |
| for layer in output_block_layers: | |
| layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1) | |
| if layer_id in output_block_list: | |
| output_block_list[layer_id].append(layer_name) | |
| else: | |
| output_block_list[layer_id] = [layer_name] | |
| if len(output_block_list) > 1: | |
| resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key] | |
| attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key] | |
| paths = renew_resnet_paths(resnets) | |
| meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"} | |
| assign_to_checkpoint( | |
| paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config | |
| ) | |
| if ["conv.weight", "conv.bias"] in output_block_list.values(): | |
| index = list(output_block_list.values()).index(["conv.weight", "conv.bias"]) | |
| new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[ | |
| f"output_blocks.{i}.{index}.conv.weight" | |
| ] | |
| new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[ | |
| f"output_blocks.{i}.{index}.conv.bias" | |
| ] | |
| # Clear attentions as they have been attributed above. | |
| if len(attentions) == 2: | |
| attentions = [] | |
| elif f"output_blocks.{i}.1.weight" in unet_state_dict: | |
| # text_unet uses linear layers in place of upsamplers | |
| shape = unet_state_dict[f"output_blocks.{i}.1.weight"].shape | |
| if shape[0] != shape[1]: | |
| continue | |
| new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.weight"] = unet_state_dict.pop( | |
| f"output_blocks.{i}.1.weight" | |
| ) | |
| new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.bias"] = unet_state_dict.pop( | |
| f"output_blocks.{i}.1.bias" | |
| ) | |
| # Clear attentions as they have been attributed above. | |
| if len(attentions) == 2: | |
| attentions = [] | |
| elif f"output_blocks.{i}.2.weight" in unet_state_dict: | |
| # text_unet uses linear layers in place of upsamplers | |
| shape = unet_state_dict[f"output_blocks.{i}.2.weight"].shape | |
| if shape[0] != shape[1]: | |
| continue | |
| new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.weight"] = unet_state_dict.pop( | |
| f"output_blocks.{i}.2.weight" | |
| ) | |
| new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.bias"] = unet_state_dict.pop( | |
| f"output_blocks.{i}.2.bias" | |
| ) | |
| if len(attentions): | |
| paths = renew_attention_paths(attentions) | |
| meta_path = { | |
| "old": f"output_blocks.{i}.1", | |
| "new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}", | |
| } | |
| assign_to_checkpoint( | |
| paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config | |
| ) | |
| else: | |
| resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1) | |
| for path in resnet_0_paths: | |
| old_path = ".".join(["output_blocks", str(i), path["old"]]) | |
| new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]]) | |
| new_checkpoint[new_path] = unet_state_dict[old_path] | |
| return new_checkpoint | |
| def convert_vd_vae_checkpoint(checkpoint, config): | |
| # extract state dict for VAE | |
| vae_state_dict = {} | |
| keys = list(checkpoint.keys()) | |
| for key in keys: | |
| vae_state_dict[key] = checkpoint.get(key) | |
| new_checkpoint = {} | |
| new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"] | |
| new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"] | |
| new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"] | |
| new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"] | |
| new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"] | |
| new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"] | |
| new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"] | |
| new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"] | |
| new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"] | |
| new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"] | |
| new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"] | |
| new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"] | |
| new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"] | |
| new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"] | |
| new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"] | |
| new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"] | |
| # Retrieves the keys for the encoder down blocks only | |
| num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer}) | |
| down_blocks = { | |
| layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks) | |
| } | |
| # Retrieves the keys for the decoder up blocks only | |
| num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer}) | |
| up_blocks = { | |
| layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks) | |
| } | |
| for i in range(num_down_blocks): | |
| resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key] | |
| if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: | |
| new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop( | |
| f"encoder.down.{i}.downsample.conv.weight" | |
| ) | |
| new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop( | |
| f"encoder.down.{i}.downsample.conv.bias" | |
| ) | |
| paths = renew_vae_resnet_paths(resnets) | |
| meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"} | |
| assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
| mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key] | |
| num_mid_res_blocks = 2 | |
| for i in range(1, num_mid_res_blocks + 1): | |
| resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key] | |
| paths = renew_vae_resnet_paths(resnets) | |
| meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} | |
| assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
| mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key] | |
| paths = renew_vae_attention_paths(mid_attentions) | |
| meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} | |
| assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
| conv_attn_to_linear(new_checkpoint) | |
| for i in range(num_up_blocks): | |
| block_id = num_up_blocks - 1 - i | |
| resnets = [ | |
| key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key | |
| ] | |
| if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: | |
| new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[ | |
| f"decoder.up.{block_id}.upsample.conv.weight" | |
| ] | |
| new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[ | |
| f"decoder.up.{block_id}.upsample.conv.bias" | |
| ] | |
| paths = renew_vae_resnet_paths(resnets) | |
| meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"} | |
| assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
| mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key] | |
| num_mid_res_blocks = 2 | |
| for i in range(1, num_mid_res_blocks + 1): | |
| resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key] | |
| paths = renew_vae_resnet_paths(resnets) | |
| meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} | |
| assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
| mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key] | |
| paths = renew_vae_attention_paths(mid_attentions) | |
| meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} | |
| assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
| conv_attn_to_linear(new_checkpoint) | |
| return new_checkpoint | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument( | |
| "--unet_checkpoint_path", default=None, type=str, required=False, help="Path to the checkpoint to convert." | |
| ) | |
| parser.add_argument( | |
| "--vae_checkpoint_path", default=None, type=str, required=False, help="Path to the checkpoint to convert." | |
| ) | |
| parser.add_argument( | |
| "--optimus_checkpoint_path", default=None, type=str, required=False, help="Path to the checkpoint to convert." | |
| ) | |
| parser.add_argument( | |
| "--scheduler_type", | |
| default="pndm", | |
| type=str, | |
| help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']", | |
| ) | |
| parser.add_argument( | |
| "--extract_ema", | |
| action="store_true", | |
| help=( | |
| "Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" | |
| " or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" | |
| " higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." | |
| ), | |
| ) | |
| parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") | |
| args = parser.parse_args() | |
| scheduler_config = SCHEDULER_CONFIG | |
| num_train_timesteps = scheduler_config.timesteps | |
| beta_start = scheduler_config.beta_linear_start | |
| beta_end = scheduler_config.beta_linear_end | |
| if args.scheduler_type == "pndm": | |
| scheduler = PNDMScheduler( | |
| beta_end=beta_end, | |
| beta_schedule="scaled_linear", | |
| beta_start=beta_start, | |
| num_train_timesteps=num_train_timesteps, | |
| skip_prk_steps=True, | |
| steps_offset=1, | |
| ) | |
| elif args.scheduler_type == "lms": | |
| scheduler = LMSDiscreteScheduler(beta_start=beta_start, beta_end=beta_end, beta_schedule="scaled_linear") | |
| elif args.scheduler_type == "euler": | |
| scheduler = EulerDiscreteScheduler(beta_start=beta_start, beta_end=beta_end, beta_schedule="scaled_linear") | |
| elif args.scheduler_type == "euler-ancestral": | |
| scheduler = EulerAncestralDiscreteScheduler( | |
| beta_start=beta_start, beta_end=beta_end, beta_schedule="scaled_linear" | |
| ) | |
| elif args.scheduler_type == "dpm": | |
| scheduler = DPMSolverMultistepScheduler( | |
| beta_start=beta_start, beta_end=beta_end, beta_schedule="scaled_linear" | |
| ) | |
| elif args.scheduler_type == "ddim": | |
| scheduler = DDIMScheduler( | |
| beta_start=beta_start, | |
| beta_end=beta_end, | |
| beta_schedule="scaled_linear", | |
| clip_sample=False, | |
| set_alpha_to_one=False, | |
| steps_offset=1, | |
| ) | |
| else: | |
| raise ValueError(f"Scheduler of type {args.scheduler_type} doesn't exist!") | |
| # Convert the UNet2DConditionModel models. | |
| if args.unet_checkpoint_path is not None: | |
| # image UNet | |
| image_unet_config = create_image_unet_diffusers_config(IMAGE_UNET_CONFIG) | |
| checkpoint = torch.load(args.unet_checkpoint_path) | |
| converted_image_unet_checkpoint = convert_vd_unet_checkpoint( | |
| checkpoint, image_unet_config, unet_key="model.diffusion_model.unet_image.", extract_ema=args.extract_ema | |
| ) | |
| image_unet = UNet2DConditionModel(**image_unet_config) | |
| image_unet.load_state_dict(converted_image_unet_checkpoint) | |
| # text UNet | |
| text_unet_config = create_text_unet_diffusers_config(TEXT_UNET_CONFIG) | |
| converted_text_unet_checkpoint = convert_vd_unet_checkpoint( | |
| checkpoint, text_unet_config, unet_key="model.diffusion_model.unet_text.", extract_ema=args.extract_ema | |
| ) | |
| text_unet = UNetFlatConditionModel(**text_unet_config) | |
| text_unet.load_state_dict(converted_text_unet_checkpoint) | |
| # Convert the VAE model. | |
| if args.vae_checkpoint_path is not None: | |
| vae_config = create_vae_diffusers_config(AUTOENCODER_CONFIG) | |
| checkpoint = torch.load(args.vae_checkpoint_path) | |
| converted_vae_checkpoint = convert_vd_vae_checkpoint(checkpoint, vae_config) | |
| vae = AutoencoderKL(**vae_config) | |
| vae.load_state_dict(converted_vae_checkpoint) | |
| tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14") | |
| image_feature_extractor = CLIPImageProcessor.from_pretrained("openai/clip-vit-large-patch14") | |
| text_encoder = CLIPTextModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") | |
| image_encoder = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") | |
| pipe = VersatileDiffusionPipeline( | |
| scheduler=scheduler, | |
| tokenizer=tokenizer, | |
| image_feature_extractor=image_feature_extractor, | |
| text_encoder=text_encoder, | |
| image_encoder=image_encoder, | |
| image_unet=image_unet, | |
| text_unet=text_unet, | |
| vae=vae, | |
| ) | |
| pipe.save_pretrained(args.dump_path) | |