Spaces:
Sleeping
Sleeping
| import logging | |
| import re | |
| from typing import List, Tuple | |
| import torch | |
| import numpy as np | |
| from transformers import ( | |
| AutoModelForCausalLM, | |
| AutoTokenizer, | |
| Pipeline, | |
| PreTrainedModel, | |
| PreTrainedTokenizer, | |
| ) | |
| from transformers.utils import is_tf_available | |
| if is_tf_available(): | |
| import tensorflow as tf | |
| from .consts import END_KEY, PROMPT_FOR_GENERATION_FORMAT, RESPONSE_KEY | |
| logger = logging.getLogger(__name__) | |
| def load_model_tokenizer_for_generate( | |
| pretrained_model_name_or_path: str, | |
| ) -> Tuple[PreTrainedModel, PreTrainedTokenizer]: | |
| """Loads the model and tokenizer so that it can be used for generating responses. | |
| Args: | |
| pretrained_model_name_or_path (str): name or path for model | |
| Returns: | |
| Tuple[PreTrainedModel, PreTrainedTokenizer]: model and tokenizer | |
| """ | |
| tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path, padding_side="left") | |
| model = AutoModelForCausalLM.from_pretrained( | |
| pretrained_model_name_or_path, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True | |
| ) | |
| return model, tokenizer | |
| def get_special_token_id(tokenizer: PreTrainedTokenizer, key: str) -> int: | |
| """Gets the token ID for a given string that has been added to the tokenizer as a special token. | |
| When training, we configure the tokenizer so that the sequences like "### Instruction:" and "### End" are | |
| treated specially and converted to a single, new token. This retrieves the token ID each of these keys map to. | |
| Args: | |
| tokenizer (PreTrainedTokenizer): the tokenizer | |
| key (str): the key to convert to a single token | |
| Raises: | |
| ValueError: if more than one ID was generated | |
| Returns: | |
| int: the token ID for the given key | |
| """ | |
| token_ids = tokenizer.encode(key) | |
| if len(token_ids) > 1: | |
| raise ValueError(f"Expected only a single token for '{key}' but found {token_ids}") | |
| return token_ids[0] | |
| class InstructionTextGenerationPipeline(Pipeline): | |
| def __init__( | |
| self, *args, do_sample: bool = True, max_new_tokens: int = 256, top_p: float = 0.92, top_k: int = 0, **kwargs | |
| ): | |
| """Initialize the pipeline | |
| Args: | |
| do_sample (bool, optional): Whether or not to use sampling. Defaults to True. | |
| max_new_tokens (int, optional): Max new tokens after the prompt to generate. Defaults to 256. | |
| top_p (float, optional): If set to float < 1, only the smallest set of most probable tokens with | |
| probabilities that add up to top_p or higher are kept for generation. Defaults to 0.92. | |
| top_k (int, optional): The number of highest probability vocabulary tokens to keep for top-k-filtering. | |
| Defaults to 0. | |
| """ | |
| super().__init__(*args, do_sample=do_sample, max_new_tokens=max_new_tokens, top_p=top_p, top_k=top_k, | |
| **kwargs) | |
| def _sanitize_parameters(self, | |
| return_full_text: bool = None, | |
| **generate_kwargs): | |
| preprocess_params = {} | |
| # newer versions of the tokenizer configure the response key as a special token. newer versions still may | |
| # append a newline to yield a single token. find whatever token is configured for the response key. | |
| tokenizer_response_key = next( | |
| (token for token in self.tokenizer.additional_special_tokens if token.startswith(RESPONSE_KEY)), None | |
| ) | |
| response_key_token_id = None | |
| end_key_token_id = None | |
| if tokenizer_response_key: | |
| try: | |
| response_key_token_id = get_special_token_id(self.tokenizer, tokenizer_response_key) | |
| end_key_token_id = get_special_token_id(self.tokenizer, END_KEY) | |
| # Ensure generation stops once it generates "### End" | |
| generate_kwargs["eos_token_id"] = end_key_token_id | |
| except ValueError: | |
| pass | |
| forward_params = generate_kwargs | |
| postprocess_params = { | |
| "response_key_token_id": response_key_token_id, | |
| "end_key_token_id": end_key_token_id | |
| } | |
| if return_full_text is not None: | |
| postprocess_params["return_full_text"] = return_full_text | |
| return preprocess_params, forward_params, postprocess_params | |
| def preprocess(self, instruction_text, **generate_kwargs): | |
| prompt_text = PROMPT_FOR_GENERATION_FORMAT.format(instruction=instruction_text) | |
| inputs = self.tokenizer( | |
| prompt_text, | |
| return_tensors="pt", | |
| ) | |
| inputs["prompt_text"] = prompt_text | |
| inputs["instruction_text"] = instruction_text | |
| return inputs | |
| def _forward(self, model_inputs, **generate_kwargs): | |
| input_ids = model_inputs["input_ids"] | |
| attention_mask = model_inputs.get("attention_mask", None) | |
| if input_ids.shape[1] == 0: | |
| input_ids = None | |
| attention_mask = None | |
| in_b = 1 | |
| else: | |
| in_b = input_ids.shape[0] | |
| generated_sequence = self.model.generate( | |
| input_ids=input_ids.to(self.model.device), | |
| attention_mask=attention_mask.to(self.model.device), | |
| pad_token_id=self.tokenizer.pad_token_id, | |
| **generate_kwargs, | |
| ) | |
| out_b = generated_sequence.shape[0] | |
| if self.framework == "pt": | |
| generated_sequence = generated_sequence.reshape(in_b, out_b // in_b, *generated_sequence.shape[1:]) | |
| elif self.framework == "tf": | |
| generated_sequence = tf.reshape(generated_sequence, (in_b, out_b // in_b, *generated_sequence.shape[1:])) | |
| instruction_text = model_inputs.pop("instruction_text") | |
| return {"generated_sequence": generated_sequence, "input_ids": input_ids, "instruction_text": instruction_text} | |
| def postprocess(self, model_outputs, response_key_token_id, end_key_token_id, return_full_text: bool = False): | |
| generated_sequence = model_outputs["generated_sequence"][0] | |
| instruction_text = model_outputs["instruction_text"] | |
| generated_sequence: List[List[int]] = generated_sequence.numpy().tolist() | |
| records = [] | |
| for sequence in generated_sequence: | |
| # The response will be set to this variable if we can identify it. | |
| decoded = None | |
| # If we have token IDs for the response and end, then we can find the tokens and only decode between them. | |
| if response_key_token_id and end_key_token_id: | |
| # Find where "### Response:" is first found in the generated tokens. Considering this is part of the | |
| # prompt, we should definitely find it. We will return the tokens found after this token. | |
| try: | |
| response_pos = sequence.index(response_key_token_id) | |
| except ValueError: | |
| logger.warn(f"Could not find response key {response_key_token_id} in: {sequence}") | |
| response_pos = None | |
| if response_pos: | |
| # Next find where "### End" is located. The model has been trained to end its responses with this | |
| # sequence (or actually, the token ID it maps to, since it is a special token). We may not find | |
| # this token, as the response could be truncated. If we don't find it then just return everything | |
| # to the end. Note that even though we set eos_token_id, we still see the this token at the end. | |
| try: | |
| end_pos = sequence.index(end_key_token_id) | |
| except ValueError: | |
| end_pos = None | |
| decoded = self.tokenizer.decode(sequence[response_pos + 1 : end_pos]).strip() | |
| if not decoded: | |
| # Otherwise we'll decode everything and use a regex to find the response and end. | |
| fully_decoded = self.tokenizer.decode(sequence) | |
| # The response appears after "### Response:". The model has been trained to append "### End" at the | |
| # end. | |
| m = re.search(r"#+\s*Response:\s*(.+?)#+\s*End", fully_decoded, flags=re.DOTALL) | |
| if m: | |
| decoded = m.group(1).strip() | |
| else: | |
| # The model might not generate the "### End" sequence before reaching the max tokens. In this case, | |
| # return everything after "### Response:". | |
| m = re.search(r"#+\s*Response:\s*(.+)", fully_decoded, flags=re.DOTALL) | |
| if m: | |
| decoded = m.group(1).strip() | |
| else: | |
| logger.warn(f"Failed to find response in:\n{fully_decoded}") | |
| # If the full text is requested, then append the decoded text to the original instruction. | |
| # This technically isn't the full text, as we format the instruction in the prompt the model has been | |
| # trained on, but to the client it will appear to be the full text. | |
| if return_full_text: | |
| decoded = f"{instruction_text}\n{decoded}" | |
| rec = {"generated_text": decoded} | |
| records.append(rec) | |
| return records | |
| def generate_response( | |
| instruction: str, | |
| *, | |
| model: PreTrainedModel, | |
| tokenizer: PreTrainedTokenizer, | |
| **kwargs, | |
| ) -> str: | |
| """Given an instruction, uses the model and tokenizer to generate a response. This formats the instruction in | |
| the instruction format that the model was fine-tuned on. | |
| Args: | |
| instruction (str): _description_ | |
| model (PreTrainedModel): the model to use | |
| tokenizer (PreTrainedTokenizer): the tokenizer to use | |
| Returns: | |
| str: response | |
| """ | |
| generation_pipeline = InstructionTextGenerationPipeline(model=model, tokenizer=tokenizer, **kwargs) | |
| return generation_pipeline(instruction)[0]["generated_text"] | |