# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for resnet.""" # Import libraries from absl.testing import parameterized import tensorflow as tf, tf_keras from official.vision.modeling.backbones import resnet_3d class ResNet3DTest(parameterized.TestCase, tf.test.TestCase): @parameterized.parameters( (128, 50, 4, 'v0', False, 0.0), (128, 50, 4, 'v1', False, 0.2), (256, 50, 4, 'v1', True, 0.2), ) def test_network_creation(self, input_size, model_id, endpoint_filter_scale, stem_type, se_ratio, init_stochastic_depth_rate): """Test creation of ResNet3D family models.""" tf_keras.backend.set_image_data_format('channels_last') temporal_strides = [1, 1, 1, 1] temporal_kernel_sizes = [(3, 3, 3), (3, 1, 3, 1), (3, 1, 3, 1, 3, 1), (1, 3, 1)] use_self_gating = [True, False, True, False] network = resnet_3d.ResNet3D( model_id=model_id, temporal_strides=temporal_strides, temporal_kernel_sizes=temporal_kernel_sizes, use_self_gating=use_self_gating, stem_type=stem_type, se_ratio=se_ratio, init_stochastic_depth_rate=init_stochastic_depth_rate) inputs = tf_keras.Input(shape=(8, input_size, input_size, 3), batch_size=1) endpoints = network(inputs) self.assertAllEqual([ 1, 2, input_size / 2**2, input_size / 2**2, 64 * endpoint_filter_scale ], endpoints['2'].shape.as_list()) self.assertAllEqual([ 1, 2, input_size / 2**3, input_size / 2**3, 128 * endpoint_filter_scale ], endpoints['3'].shape.as_list()) self.assertAllEqual([ 1, 2, input_size / 2**4, input_size / 2**4, 256 * endpoint_filter_scale ], endpoints['4'].shape.as_list()) self.assertAllEqual([ 1, 2, input_size / 2**5, input_size / 2**5, 512 * endpoint_filter_scale ], endpoints['5'].shape.as_list()) def test_serialize_deserialize(self): # Create a network object that sets all of its config options. kwargs = dict( model_id=50, temporal_strides=[1, 1, 1, 1], temporal_kernel_sizes=[(3, 3, 3), (3, 1, 3, 1), (3, 1, 3, 1, 3, 1), (1, 3, 1)], stem_type='v0', stem_conv_temporal_kernel_size=5, stem_conv_temporal_stride=2, stem_pool_temporal_stride=2, se_ratio=0.0, use_self_gating=None, init_stochastic_depth_rate=0.0, use_sync_bn=False, activation='relu', norm_momentum=0.99, norm_epsilon=0.001, kernel_initializer='VarianceScaling', kernel_regularizer=None, bias_regularizer=None, ) network = resnet_3d.ResNet3D(**kwargs) expected_config = dict(kwargs) self.assertEqual(network.get_config(), expected_config) # Create another network object from the first object's config. new_network = resnet_3d.ResNet3D.from_config(network.get_config()) # Validate that the config can be forced to JSON. _ = new_network.to_json() # If the serialization was successful, the new config should match the old. self.assertAllEqual(network.get_config(), new_network.get_config()) if __name__ == '__main__': tf.test.main()