# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for tfds factory functions.""" from absl.testing import parameterized import tensorflow as tf, tf_keras from official.vision.dataloaders import decoder as base_decoder from official.vision.dataloaders import tfds_factory class TFDSFactoryTest(tf.test.TestCase, parameterized.TestCase): def _create_test_example(self): serialized_example = { 'image': tf.ones(shape=(100, 100, 3), dtype=tf.uint8), 'label': 1, 'image/id': 0, 'objects': { 'label': 1, 'is_crowd': 0, 'area': 0.5, 'bbox': [0.1, 0.2, 0.3, 0.4] }, 'segmentation_label': tf.ones((100, 100, 1), dtype=tf.uint8), 'image_left': tf.ones(shape=(100, 100, 3), dtype=tf.uint8) } return serialized_example @parameterized.parameters( ('imagenet2012'), ('cifar10'), ('cifar100'), ) def test_classification_decoder(self, tfds_name): decoder = tfds_factory.get_classification_decoder(tfds_name) self.assertIsInstance(decoder, base_decoder.Decoder) decoded_tensor = decoder.decode(self._create_test_example()) self.assertLen(decoded_tensor, 2) self.assertIn('image/encoded', decoded_tensor) self.assertIn('image/class/label', decoded_tensor) @parameterized.parameters( ('flowers'), ('coco'), ) def test_doesnt_exit_classification_decoder(self, tfds_name): with self.assertRaises(ValueError): _ = tfds_factory.get_classification_decoder(tfds_name) @parameterized.parameters( ('coco'), ('coco/2014'), ('coco/2017'), ) def test_detection_decoder(self, tfds_name): decoder = tfds_factory.get_detection_decoder(tfds_name) self.assertIsInstance(decoder, base_decoder.Decoder) decoded_tensor = decoder.decode(self._create_test_example()) self.assertLen(decoded_tensor, 8) self.assertIn('image', decoded_tensor) self.assertIn('source_id', decoded_tensor) self.assertIn('height', decoded_tensor) self.assertIn('width', decoded_tensor) self.assertIn('groundtruth_classes', decoded_tensor) self.assertIn('groundtruth_is_crowd', decoded_tensor) self.assertIn('groundtruth_area', decoded_tensor) self.assertIn('groundtruth_boxes', decoded_tensor) @parameterized.parameters( ('pascal'), ('cityscapes'), ) def test_doesnt_exit_detection_decoder(self, tfds_name): with self.assertRaises(ValueError): _ = tfds_factory.get_detection_decoder(tfds_name) @parameterized.parameters( ('cityscapes'), ('cityscapes/semantic_segmentation'), ('cityscapes/semantic_segmentation_extra'), ) def test_segmentation_decoder(self, tfds_name): decoder = tfds_factory.get_segmentation_decoder(tfds_name) self.assertIsInstance(decoder, base_decoder.Decoder) decoded_tensor = decoder.decode(self._create_test_example()) self.assertLen(decoded_tensor, 4) self.assertIn('image/encoded', decoded_tensor) self.assertIn('image/segmentation/class/encoded', decoded_tensor) self.assertIn('image/height', decoded_tensor) self.assertIn('image/width', decoded_tensor) @parameterized.parameters( ('coco'), ('imagenet'), ) def test_doesnt_exit_segmentation_decoder(self, tfds_name): with self.assertRaises(ValueError): _ = tfds_factory.get_segmentation_decoder(tfds_name) if __name__ == '__main__': tf.test.main()