# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for treatment_fraction.""" from absl.testing import parameterized import numpy as np import tensorflow as tf, tf_keras from official.recommendation.uplift import keras_test_case from official.recommendation.uplift import types from official.recommendation.uplift.metrics import treatment_fraction class TreatmentFractionTest( keras_test_case.KerasTestCase, parameterized.TestCase ): def _get_y_pred( self, is_treatment: tf.Tensor ) -> types.TwoTowerTrainingOutputs: # Only the is_treatment tensor is required for testing. return types.TwoTowerTrainingOutputs( shared_embedding=tf.ones_like(is_treatment), control_predictions=tf.ones_like(is_treatment), treatment_predictions=tf.ones_like(is_treatment), uplift=tf.ones_like(is_treatment), control_logits=tf.ones_like(is_treatment), treatment_logits=tf.ones_like(is_treatment), true_logits=tf.ones_like(is_treatment), is_treatment=is_treatment, ) @parameterized.named_parameters( { "testcase_name": "unweighted", "is_treatment": tf.constant([[True], [False], [True], [False]]), "sample_weight": None, "expected_result": 0.5, }, { "testcase_name": "weighted", "is_treatment": tf.constant( [[True], [False], [True], [True], [False]] ), "sample_weight": tf.constant([0.5, 0.5, 0, 0.7, 1.8]), "expected_result": np.average( [1, 0, 1, 1, 0], weights=[0.5, 0.5, 0, 0.7, 1.8] ), }, { "testcase_name": "only_control", "is_treatment": tf.constant([[False], [False], [False]]), "sample_weight": tf.constant([1, 0, 1]), "expected_result": 0.0, }, { "testcase_name": "only_treatment", "is_treatment": tf.constant([[True], [True], [True]]), "sample_weight": tf.constant([0, 1, 1]), "expected_result": 1.0, }, { "testcase_name": "one_entry", "is_treatment": tf.constant([True]), "sample_weight": None, "expected_result": 1.0, }, { "testcase_name": "no_entry", "is_treatment": tf.constant([], dtype=tf.bool), "sample_weight": tf.constant([]), "expected_result": 0.0, }, ) def test_treatment_fraction_computes_weighted_mean_of_is_treatment_tensor( self, is_treatment, sample_weight, expected_result ): metric = treatment_fraction.TreatmentFraction() y_true = tf.zeros_like(is_treatment) y_pred = self._get_y_pred(is_treatment) metric.update_state( y_true=y_true, y_pred=y_pred, sample_weight=sample_weight ) self.assertEqual(expected_result, metric.result()) def test_multiple_update_batches_returns_aggregated_treatment_fractions(self): metric = treatment_fraction.TreatmentFraction() metric.update_state( y_true=tf.zeros(3), y_pred=self._get_y_pred(tf.constant([[True], [True], [True]])), sample_weight=None, ) metric.update_state( y_true=tf.zeros(3), y_pred=self._get_y_pred(tf.constant([[False], [False], [False]])), sample_weight=None, ) metric.update_state( y_true=tf.zeros(3), y_pred=self._get_y_pred(tf.constant([[True], [False], [True]])), sample_weight=tf.constant([0.3, 0.25, 0.7]), ) expected_treatment_fraction = np.average( [1, 1, 1, 0, 0, 0, 1, 0, 1], weights=[1, 1, 1, 1, 1, 1, 0.3, 0.25, 0.7] ) self.assertEqual(expected_treatment_fraction, metric.result()) def test_initial_and_reset_state_return_zero_treatment_fraction(self): metric = treatment_fraction.TreatmentFraction() self.assertEqual(0.0, metric.result()) metric( y_true=tf.zeros(3), y_pred=self._get_y_pred(tf.constant([[True], [False], [True]])), ) self.assertEqual(2 / 3, metric.result()) metric.reset_states() self.assertEqual(0.0, metric.result()) def test_metric_config_is_serializable(self): metric = treatment_fraction.TreatmentFraction( name="test_name", dtype=tf.float16 ) y_pred = self._get_y_pred( is_treatment=tf.constant([[True], [False], [True], [False]]), ) self.assertLayerConfigurable( layer=metric, y_true=tf.zeros(4), y_pred=y_pred, serializable=True ) def test_invalid_prediction_tensor_type_raises_type_error(self): metric = treatment_fraction.TreatmentFraction() with self.assertRaisesRegex( TypeError, "y_pred must be of type `TwoTowerTrainingOutputs`" ): metric.update_state(y_true=tf.ones((3, 1)), y_pred=tf.ones((3, 1))) if __name__ == "__main__": tf.test.main()