deanna-emery's picture
updates
93528c6
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for instance_heads.py."""
# Import libraries
from absl.testing import parameterized
import numpy as np
import tensorflow as tf, tf_keras
from official.vision.modeling.heads import instance_heads
class DetectionHeadTest(parameterized.TestCase, tf.test.TestCase):
@parameterized.parameters(
(0, 0, False, False),
(0, 1, False, False),
(1, 0, False, False),
(1, 1, False, False),
)
def test_forward(self, num_convs, num_fcs, use_separable_conv, use_sync_bn):
detection_head = instance_heads.DetectionHead(
num_classes=3,
num_convs=num_convs,
num_filters=16,
use_separable_conv=use_separable_conv,
num_fcs=num_fcs,
fc_dims=4,
activation='relu',
use_sync_bn=use_sync_bn,
norm_momentum=0.99,
norm_epsilon=0.001,
kernel_regularizer=None,
bias_regularizer=None,
)
roi_features = np.random.rand(2, 10, 128, 128, 16)
scores, boxes = detection_head(roi_features)
self.assertAllEqual(scores.numpy().shape, [2, 10, 3])
self.assertAllEqual(boxes.numpy().shape, [2, 10, 12])
def test_serialize_deserialize(self):
detection_head = instance_heads.DetectionHead(
num_classes=91,
num_convs=0,
num_filters=256,
use_separable_conv=False,
num_fcs=2,
fc_dims=1024,
activation='relu',
use_sync_bn=False,
norm_momentum=0.99,
norm_epsilon=0.001,
kernel_regularizer=None,
bias_regularizer=None,
)
config = detection_head.get_config()
new_detection_head = instance_heads.DetectionHead.from_config(config)
self.assertAllEqual(
detection_head.get_config(), new_detection_head.get_config())
class MaskHeadTest(parameterized.TestCase, tf.test.TestCase):
@parameterized.parameters(
(1, 1, False),
(1, 2, False),
(2, 1, False),
(2, 2, False),
)
def test_forward(self, upsample_factor, num_convs, use_sync_bn):
mask_head = instance_heads.MaskHead(
num_classes=3,
upsample_factor=upsample_factor,
num_convs=num_convs,
num_filters=16,
use_separable_conv=False,
activation='relu',
use_sync_bn=use_sync_bn,
norm_momentum=0.99,
norm_epsilon=0.001,
kernel_regularizer=None,
bias_regularizer=None,
)
roi_features = np.random.rand(2, 10, 14, 14, 16)
roi_classes = np.zeros((2, 10))
masks = mask_head([roi_features, roi_classes])
self.assertAllEqual(
masks.numpy().shape,
[2, 10, 14 * upsample_factor, 14 * upsample_factor])
def test_serialize_deserialize(self):
mask_head = instance_heads.MaskHead(
num_classes=3,
upsample_factor=2,
num_convs=1,
num_filters=256,
use_separable_conv=False,
activation='relu',
use_sync_bn=False,
norm_momentum=0.99,
norm_epsilon=0.001,
kernel_regularizer=None,
bias_regularizer=None,
)
config = mask_head.get_config()
new_mask_head = instance_heads.MaskHead.from_config(config)
self.assertAllEqual(
mask_head.get_config(), new_mask_head.get_config())
def test_forward_class_agnostic(self):
mask_head = instance_heads.MaskHead(
num_classes=3,
class_agnostic=True
)
roi_features = np.random.rand(2, 10, 14, 14, 16)
roi_classes = np.zeros((2, 10))
masks = mask_head([roi_features, roi_classes])
self.assertAllEqual(masks.numpy().shape, [2, 10, 28, 28])
if __name__ == '__main__':
tf.test.main()