Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""A script to export BERT as a TF-Hub SavedModel. | |
This script is **DEPRECATED** for exporting BERT encoder models; | |
see the error message in by main() for details. | |
""" | |
from typing import Text | |
# Import libraries | |
from absl import app | |
from absl import flags | |
from absl import logging | |
import tensorflow as tf, tf_keras | |
from official.legacy.bert import bert_models | |
from official.legacy.bert import configs | |
FLAGS = flags.FLAGS | |
flags.DEFINE_string("bert_config_file", None, | |
"Bert configuration file to define core bert layers.") | |
flags.DEFINE_string("model_checkpoint_path", None, | |
"File path to TF model checkpoint.") | |
flags.DEFINE_string("export_path", None, "TF-Hub SavedModel destination path.") | |
flags.DEFINE_string("vocab_file", None, | |
"The vocabulary file that the BERT model was trained on.") | |
flags.DEFINE_bool( | |
"do_lower_case", None, "Whether to lowercase. If None, " | |
"do_lower_case will be enabled if 'uncased' appears in the " | |
"name of --vocab_file") | |
flags.DEFINE_enum("model_type", "encoder", ["encoder", "squad"], | |
"What kind of BERT model to export.") | |
def create_bert_model(bert_config: configs.BertConfig) -> tf_keras.Model: | |
"""Creates a BERT keras core model from BERT configuration. | |
Args: | |
bert_config: A `BertConfig` to create the core model. | |
Returns: | |
A keras model. | |
""" | |
# Adds input layers just as placeholders. | |
input_word_ids = tf_keras.layers.Input( | |
shape=(None,), dtype=tf.int32, name="input_word_ids") | |
input_mask = tf_keras.layers.Input( | |
shape=(None,), dtype=tf.int32, name="input_mask") | |
input_type_ids = tf_keras.layers.Input( | |
shape=(None,), dtype=tf.int32, name="input_type_ids") | |
transformer_encoder = bert_models.get_transformer_encoder( | |
bert_config, sequence_length=None) | |
sequence_output, pooled_output = transformer_encoder( | |
[input_word_ids, input_mask, input_type_ids]) | |
# To keep consistent with legacy hub modules, the outputs are | |
# "pooled_output" and "sequence_output". | |
return tf_keras.Model( | |
inputs=[input_word_ids, input_mask, input_type_ids], | |
outputs=[pooled_output, sequence_output]), transformer_encoder | |
def export_bert_tfhub(bert_config: configs.BertConfig, | |
model_checkpoint_path: Text, | |
hub_destination: Text, | |
vocab_file: Text, | |
do_lower_case: bool = None): | |
"""Restores a tf_keras.Model and saves for TF-Hub.""" | |
# If do_lower_case is not explicit, default to checking whether "uncased" is | |
# in the vocab file name | |
if do_lower_case is None: | |
do_lower_case = "uncased" in vocab_file | |
logging.info("Using do_lower_case=%s based on name of vocab_file=%s", | |
do_lower_case, vocab_file) | |
core_model, encoder = create_bert_model(bert_config) | |
checkpoint = tf.train.Checkpoint( | |
model=encoder, # Legacy checkpoints. | |
encoder=encoder) | |
checkpoint.restore(model_checkpoint_path).assert_existing_objects_matched() | |
core_model.vocab_file = tf.saved_model.Asset(vocab_file) | |
core_model.do_lower_case = tf.Variable(do_lower_case, trainable=False) | |
core_model.save(hub_destination, include_optimizer=False, save_format="tf") | |
def export_bert_squad_tfhub(bert_config: configs.BertConfig, | |
model_checkpoint_path: Text, | |
hub_destination: Text, | |
vocab_file: Text, | |
do_lower_case: bool = None): | |
"""Restores a tf_keras.Model for BERT with SQuAD and saves for TF-Hub.""" | |
# If do_lower_case is not explicit, default to checking whether "uncased" is | |
# in the vocab file name | |
if do_lower_case is None: | |
do_lower_case = "uncased" in vocab_file | |
logging.info("Using do_lower_case=%s based on name of vocab_file=%s", | |
do_lower_case, vocab_file) | |
span_labeling, _ = bert_models.squad_model(bert_config, max_seq_length=None) | |
checkpoint = tf.train.Checkpoint(model=span_labeling) | |
checkpoint.restore(model_checkpoint_path).assert_existing_objects_matched() | |
span_labeling.vocab_file = tf.saved_model.Asset(vocab_file) | |
span_labeling.do_lower_case = tf.Variable(do_lower_case, trainable=False) | |
span_labeling.save(hub_destination, include_optimizer=False, save_format="tf") | |
def main(_): | |
bert_config = configs.BertConfig.from_json_file(FLAGS.bert_config_file) | |
if FLAGS.model_type == "encoder": | |
deprecation_note = ( | |
"nlp/bert/export_tfhub is **DEPRECATED** for exporting BERT encoder " | |
"models. Please switch to nlp/tools/export_tfhub for exporting BERT " | |
"(and other) encoders with dict inputs/outputs conforming to " | |
"https://www.tensorflow.org/hub/common_saved_model_apis/text#transformer-encoders" | |
) | |
logging.error(deprecation_note) | |
print("\n\nNOTICE:", deprecation_note, "\n") | |
export_bert_tfhub(bert_config, FLAGS.model_checkpoint_path, | |
FLAGS.export_path, FLAGS.vocab_file, FLAGS.do_lower_case) | |
elif FLAGS.model_type == "squad": | |
export_bert_squad_tfhub(bert_config, FLAGS.model_checkpoint_path, | |
FLAGS.export_path, FLAGS.vocab_file, | |
FLAGS.do_lower_case) | |
else: | |
raise ValueError("Unsupported model_type %s." % FLAGS.model_type) | |
if __name__ == "__main__": | |
app.run(main) | |