Spaces:
Runtime error
Runtime error
File size: 11,607 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""XLNet SQUAD finetuning runner in tf2.0."""
import functools
import json
import os
import pickle
# Import libraries
from absl import app
from absl import flags
from absl import logging
import tensorflow as tf, tf_keras
# pylint: disable=unused-import
import sentencepiece as spm
from official.common import distribute_utils
from official.legacy.xlnet import common_flags
from official.legacy.xlnet import data_utils
from official.legacy.xlnet import optimization
from official.legacy.xlnet import squad_utils
from official.legacy.xlnet import training_utils
from official.legacy.xlnet import xlnet_config
from official.legacy.xlnet import xlnet_modeling as modeling
flags.DEFINE_string(
"test_feature_path", default=None, help="Path to feature of test set.")
flags.DEFINE_integer("query_len", default=64, help="Max query length.")
flags.DEFINE_integer("start_n_top", default=5, help="Beam size for span start.")
flags.DEFINE_integer("end_n_top", default=5, help="Beam size for span end.")
flags.DEFINE_string(
"predict_dir", default=None, help="Path to write predictions.")
flags.DEFINE_string(
"predict_file", default=None, help="Path to json file of test set.")
flags.DEFINE_integer(
"n_best_size", default=5, help="n best size for predictions.")
flags.DEFINE_integer("max_answer_length", default=64, help="Max answer length.")
# Data preprocessing config
flags.DEFINE_string(
"spiece_model_file", default=None, help="Sentence Piece model path.")
flags.DEFINE_integer("max_seq_length", default=512, help="Max sequence length.")
flags.DEFINE_integer("max_query_length", default=64, help="Max query length.")
flags.DEFINE_integer("doc_stride", default=128, help="Doc stride.")
FLAGS = flags.FLAGS
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self,
unique_id,
example_index,
doc_span_index,
tok_start_to_orig_index,
tok_end_to_orig_index,
token_is_max_context,
input_ids,
input_mask,
p_mask,
segment_ids,
paragraph_len,
cls_index,
start_position=None,
end_position=None,
is_impossible=None):
self.unique_id = unique_id
self.example_index = example_index
self.doc_span_index = doc_span_index
self.tok_start_to_orig_index = tok_start_to_orig_index
self.tok_end_to_orig_index = tok_end_to_orig_index
self.token_is_max_context = token_is_max_context
self.input_ids = input_ids
self.input_mask = input_mask
self.p_mask = p_mask
self.segment_ids = segment_ids
self.paragraph_len = paragraph_len
self.cls_index = cls_index
self.start_position = start_position
self.end_position = end_position
self.is_impossible = is_impossible
# pylint: disable=unused-argument
def run_evaluation(strategy, test_input_fn, eval_examples, eval_features,
original_data, eval_steps, input_meta_data, model,
current_step, eval_summary_writer):
"""Run evaluation for SQUAD task.
Args:
strategy: distribution strategy.
test_input_fn: input function for evaluation data.
eval_examples: tf.Examples of the evaluation set.
eval_features: Feature objects of the evaluation set.
original_data: The original json data for the evaluation set.
eval_steps: total number of evaluation steps.
input_meta_data: input meta data.
model: keras model object.
current_step: current training step.
eval_summary_writer: summary writer used to record evaluation metrics.
Returns:
A float metric, F1 score.
"""
def _test_step_fn(inputs):
"""Replicated validation step."""
inputs["mems"] = None
res = model(inputs, training=False)
return res, inputs["unique_ids"]
@tf.function
def _run_evaluation(test_iterator):
"""Runs validation steps."""
res, unique_ids = strategy.run(
_test_step_fn, args=(next(test_iterator),))
return res, unique_ids
test_iterator = data_utils.get_input_iterator(test_input_fn, strategy)
cur_results = []
for _ in range(eval_steps):
results, unique_ids = _run_evaluation(test_iterator)
unique_ids = strategy.experimental_local_results(unique_ids)
for result_key in results:
results[result_key] = (
strategy.experimental_local_results(results[result_key]))
for core_i in range(strategy.num_replicas_in_sync):
bsz = int(input_meta_data["test_batch_size"] /
strategy.num_replicas_in_sync)
for j in range(bsz):
result = {}
for result_key in results:
result[result_key] = results[result_key][core_i].numpy()[j]
result["unique_ids"] = unique_ids[core_i].numpy()[j]
# We appended a fake example into dev set to make data size can be
# divided by test_batch_size. Ignores this fake example during
# evaluation.
if result["unique_ids"] == 1000012047:
continue
unique_id = int(result["unique_ids"])
start_top_log_probs = ([
float(x) for x in result["start_top_log_probs"].flat
])
start_top_index = [int(x) for x in result["start_top_index"].flat]
end_top_log_probs = ([
float(x) for x in result["end_top_log_probs"].flat
])
end_top_index = [int(x) for x in result["end_top_index"].flat]
cls_logits = float(result["cls_logits"].flat[0])
cur_results.append(
squad_utils.RawResult(
unique_id=unique_id,
start_top_log_probs=start_top_log_probs,
start_top_index=start_top_index,
end_top_log_probs=end_top_log_probs,
end_top_index=end_top_index,
cls_logits=cls_logits))
if len(cur_results) % 1000 == 0:
logging.info("Processing example: %d", len(cur_results))
output_prediction_file = os.path.join(input_meta_data["predict_dir"],
"predictions.json")
output_nbest_file = os.path.join(input_meta_data["predict_dir"],
"nbest_predictions.json")
output_null_log_odds_file = os.path.join(input_meta_data["predict_dir"],
"null_odds.json")
results = squad_utils.write_predictions(
eval_examples, eval_features, cur_results, input_meta_data["n_best_size"],
input_meta_data["max_answer_length"], output_prediction_file,
output_nbest_file, output_null_log_odds_file, original_data,
input_meta_data["start_n_top"], input_meta_data["end_n_top"])
# Log current results.
log_str = "Result | "
for key, val in results.items():
log_str += "{} {} | ".format(key, val)
logging.info(log_str)
with eval_summary_writer.as_default():
tf.summary.scalar("best_f1", results["best_f1"], step=current_step)
tf.summary.scalar("best_exact", results["best_exact"], step=current_step)
eval_summary_writer.flush()
return results["best_f1"]
def get_qaxlnet_model(model_config, run_config, start_n_top, end_n_top):
model = modeling.QAXLNetModel(
model_config,
run_config,
start_n_top=start_n_top,
end_n_top=end_n_top,
name="model")
return model
def main(unused_argv):
del unused_argv
strategy = distribute_utils.get_distribution_strategy(
distribution_strategy=FLAGS.strategy_type,
tpu_address=FLAGS.tpu)
if strategy:
logging.info("***** Number of cores used : %d",
strategy.num_replicas_in_sync)
train_input_fn = functools.partial(data_utils.get_squad_input_data,
FLAGS.train_batch_size, FLAGS.seq_len,
FLAGS.query_len, strategy, True,
FLAGS.train_tfrecord_path)
test_input_fn = functools.partial(data_utils.get_squad_input_data,
FLAGS.test_batch_size, FLAGS.seq_len,
FLAGS.query_len, strategy, False,
FLAGS.test_tfrecord_path)
total_training_steps = FLAGS.train_steps
steps_per_loop = FLAGS.iterations
eval_steps = int(FLAGS.test_data_size / FLAGS.test_batch_size)
optimizer, learning_rate_fn = optimization.create_optimizer(
FLAGS.learning_rate,
total_training_steps,
FLAGS.warmup_steps,
adam_epsilon=FLAGS.adam_epsilon)
model_config = xlnet_config.XLNetConfig(FLAGS)
run_config = xlnet_config.create_run_config(True, False, FLAGS)
input_meta_data = {}
input_meta_data["start_n_top"] = FLAGS.start_n_top
input_meta_data["end_n_top"] = FLAGS.end_n_top
input_meta_data["lr_layer_decay_rate"] = FLAGS.lr_layer_decay_rate
input_meta_data["predict_dir"] = FLAGS.predict_dir
input_meta_data["n_best_size"] = FLAGS.n_best_size
input_meta_data["max_answer_length"] = FLAGS.max_answer_length
input_meta_data["test_batch_size"] = FLAGS.test_batch_size
input_meta_data["batch_size_per_core"] = int(FLAGS.train_batch_size /
strategy.num_replicas_in_sync)
input_meta_data["mem_len"] = FLAGS.mem_len
model_fn = functools.partial(get_qaxlnet_model, model_config, run_config,
FLAGS.start_n_top, FLAGS.end_n_top)
eval_examples = squad_utils.read_squad_examples(
FLAGS.predict_file, is_training=False)
if FLAGS.test_feature_path:
logging.info("start reading pickle file...")
with tf.io.gfile.GFile(FLAGS.test_feature_path, "rb") as f:
eval_features = pickle.load(f)
logging.info("finishing reading pickle file...")
else:
sp_model = spm.SentencePieceProcessor()
sp_model.LoadFromSerializedProto(
tf.io.gfile.GFile(FLAGS.spiece_model_file, "rb").read())
spm_basename = os.path.basename(FLAGS.spiece_model_file)
eval_features = squad_utils.create_eval_data(
spm_basename, sp_model, eval_examples, FLAGS.max_seq_length,
FLAGS.max_query_length, FLAGS.doc_stride, FLAGS.uncased)
with tf.io.gfile.GFile(FLAGS.predict_file) as f:
original_data = json.load(f)["data"]
eval_fn = functools.partial(run_evaluation, strategy, test_input_fn,
eval_examples, eval_features, original_data,
eval_steps, input_meta_data)
training_utils.train(
strategy=strategy,
model_fn=model_fn,
input_meta_data=input_meta_data,
eval_fn=eval_fn,
metric_fn=None,
train_input_fn=train_input_fn,
init_checkpoint=FLAGS.init_checkpoint,
init_from_transformerxl=FLAGS.init_from_transformerxl,
total_training_steps=total_training_steps,
steps_per_loop=steps_per_loop,
optimizer=optimizer,
learning_rate_fn=learning_rate_fn,
model_dir=FLAGS.model_dir,
save_steps=FLAGS.save_steps)
if __name__ == "__main__":
app.run(main)
|