Spaces:
Runtime error
Runtime error
File size: 2,115 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Configuration definitions for VGG losses, learning rates, and optimizers."""
import dataclasses
from official.legacy.image_classification.configs import base_configs
from official.modeling.hyperparams import base_config
@dataclasses.dataclass
class VGGModelConfig(base_configs.ModelConfig):
"""Configuration for the VGG model."""
name: str = 'VGG'
num_classes: int = 1000
model_params: base_config.Config = dataclasses.field(default_factory=lambda: { # pylint:disable=g-long-lambda
'num_classes': 1000,
'batch_size': None,
'use_l2_regularizer': True
})
loss: base_configs.LossConfig = dataclasses.field(
default_factory=lambda: base_configs.LossConfig( # pylint: disable=g-long-lambda
name='sparse_categorical_crossentropy'
)
)
optimizer: base_configs.OptimizerConfig = dataclasses.field(
default_factory=lambda: base_configs.OptimizerConfig( # pylint: disable=g-long-lambda
name='momentum',
epsilon=0.001,
momentum=0.9,
moving_average_decay=None,
)
)
learning_rate: base_configs.LearningRateConfig = dataclasses.field(
default_factory=lambda: base_configs.LearningRateConfig( # pylint: disable=g-long-lambda
name='stepwise',
initial_lr=0.01,
examples_per_epoch=1281167,
boundaries=[30, 60],
warmup_epochs=0,
scale_by_batch_size=1.0 / 256.0,
multipliers=[0.01 / 256, 0.001 / 256, 0.0001 / 256],
)
)
|