File size: 103,080 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Augmentation policies for enhanced image/video preprocessing.

AutoAugment Reference:
  - AutoAugment Reference: https://arxiv.org/abs/1805.09501
  - AutoAugment for Object Detection Reference: https://arxiv.org/abs/1906.11172
RandAugment Reference: https://arxiv.org/abs/1909.13719
RandomErasing Reference: https://arxiv.org/abs/1708.04896
MixupAndCutmix:
  - Mixup: https://arxiv.org/abs/1710.09412
  - Cutmix: https://arxiv.org/abs/1905.04899

RandomErasing, Mixup and Cutmix are inspired by
https://github.com/rwightman/pytorch-image-models

"""
import inspect
import math
from typing import Any, List, Iterable, Optional, Tuple, Union

import numpy as np
import tensorflow as tf, tf_keras


# This signifies the max integer that the controller RNN could predict for the
# augmentation scheme.
_MAX_LEVEL = 10.


def to_4d(image: tf.Tensor) -> tf.Tensor:
  """Converts an input Tensor to 4 dimensions.

  4D image => [N, H, W, C] or [N, C, H, W]
  3D image => [1, H, W, C] or [1, C, H, W]
  2D image => [1, H, W, 1]

  Args:
    image: The 2/3/4D input tensor.

  Returns:
    A 4D image tensor.

  Raises:
    `TypeError` if `image` is not a 2/3/4D tensor.

  """
  shape = tf.shape(image)
  original_rank = tf.rank(image)
  left_pad = tf.cast(tf.less_equal(original_rank, 3), dtype=tf.int32)
  right_pad = tf.cast(tf.equal(original_rank, 2), dtype=tf.int32)
  new_shape = tf.concat(
      [
          tf.ones(shape=left_pad, dtype=tf.int32),
          shape,
          tf.ones(shape=right_pad, dtype=tf.int32),
      ],
      axis=0,
  )
  return tf.reshape(image, new_shape)


def from_4d(image: tf.Tensor, ndims: tf.Tensor) -> tf.Tensor:
  """Converts a 4D image back to `ndims` rank."""
  shape = tf.shape(image)
  begin = tf.cast(tf.less_equal(ndims, 3), dtype=tf.int32)
  end = 4 - tf.cast(tf.equal(ndims, 2), dtype=tf.int32)
  new_shape = shape[begin:end]
  return tf.reshape(image, new_shape)


def _pad(
    image: tf.Tensor,
    filter_shape: Union[List[int], Tuple[int, ...]],
    mode: str = 'CONSTANT',
    constant_values: Union[int, tf.Tensor] = 0,
) -> tf.Tensor:
  """Explicitly pads a 4-D image.

  Equivalent to the implicit padding method offered in `tf.nn.conv2d` and
  `tf.nn.depthwise_conv2d`, but supports non-zero, reflect and symmetric
  padding mode. For the even-sized filter, it pads one more value to the
  right or the bottom side.

  Args:
    image: A 4-D `Tensor` of shape `[batch_size, height, width, channels]`.
    filter_shape: A `tuple`/`list` of 2 integers, specifying the height and
      width of the 2-D filter.
    mode: A `string`, one of "REFLECT", "CONSTANT", or "SYMMETRIC". The type of
      padding algorithm to use, which is compatible with `mode` argument in
      `tf.pad`. For more details, please refer to
      https://www.tensorflow.org/api_docs/python/tf/pad.
    constant_values: A `scalar`, the pad value to use in "CONSTANT" padding
      mode.

  Returns:
    A padded image.
  """
  if mode.upper() not in {'REFLECT', 'CONSTANT', 'SYMMETRIC'}:
    raise ValueError(
        'padding should be one of "REFLECT", "CONSTANT", or "SYMMETRIC".'
    )
  constant_values = tf.convert_to_tensor(constant_values, image.dtype)
  filter_height, filter_width = filter_shape
  pad_top = (filter_height - 1) // 2
  pad_bottom = filter_height - 1 - pad_top
  pad_left = (filter_width - 1) // 2
  pad_right = filter_width - 1 - pad_left
  paddings = [[0, 0], [pad_top, pad_bottom], [pad_left, pad_right], [0, 0]]
  return tf.pad(image, paddings, mode=mode, constant_values=constant_values)


def _get_gaussian_kernel(sigma, filter_shape):
  """Computes 1D Gaussian kernel."""
  sigma = tf.convert_to_tensor(sigma)
  x = tf.range(-filter_shape // 2 + 1, filter_shape // 2 + 1)
  x = tf.cast(x**2, sigma.dtype)
  x = tf.nn.softmax(-x / (2.0 * (sigma**2)))
  return x


def _get_gaussian_kernel_2d(gaussian_filter_x, gaussian_filter_y):
  """Computes 2D Gaussian kernel given 1D kernels."""
  gaussian_kernel = tf.matmul(gaussian_filter_x, gaussian_filter_y)
  return gaussian_kernel


def _normalize_tuple(value, n, name):
  """Transforms an integer or iterable of integers into an integer tuple.

  Args:
    value: The value to validate and convert. Could an int, or any iterable of
      ints.
    n: The size of the tuple to be returned.
    name: The name of the argument being validated, e.g. "strides" or
      "kernel_size". This is only used to format error messages.

  Returns:
    A tuple of n integers.

  Raises:
    ValueError: If something else than an int/long or iterable thereof was
      passed.
  """
  if isinstance(value, int):
    return (value,) * n
  else:
    try:
      value_tuple = tuple(value)
    except TypeError as exc:
      raise TypeError(
          f'The {name} argument must be a tuple of {n} integers. '
          f'Received: {value}'
      ) from exc
    if len(value_tuple) != n:
      raise ValueError(
          f'The {name} argument must be a tuple of {n} integers. '
          f'Received: {value}'
      )
    for single_value in value_tuple:
      try:
        int(single_value)
      except (ValueError, TypeError) as exc:
        raise ValueError(
            f'The {name} argument must be a tuple of {n} integers. Received:'
            f' {value} including element {single_value} of type'
            f' {type(single_value)}.'
        ) from exc
    return value_tuple


def gaussian_filter2d(
    image: tf.Tensor,
    filter_shape: Union[List[int], Tuple[int, ...], int],
    sigma: Union[List[float], Tuple[float], float] = 1.0,
    padding: str = 'REFLECT',
    constant_values: Union[int, tf.Tensor] = 0,
    name: Optional[str] = None,
) -> tf.Tensor:
  """Performs Gaussian blur on image(s).

  Args:
    image: Either a 2-D `Tensor` of shape `[height, width]`, a 3-D `Tensor` of
      shape `[height, width, channels]`, or a 4-D `Tensor` of shape
      `[batch_size, height, width, channels]`.
    filter_shape: An `integer` or `tuple`/`list` of 2 integers, specifying the
      height and width of the 2-D gaussian filter. Can be a single integer to
      specify the same value for all spatial dimensions.
    sigma: A `float` or `tuple`/`list` of 2 floats, specifying the standard
      deviation in x and y direction the 2-D gaussian filter. Can be a single
      float to specify the same value for all spatial dimensions.
    padding: A `string`, one of "REFLECT", "CONSTANT", or "SYMMETRIC". The type
      of padding algorithm to use, which is compatible with `mode` argument in
      `tf.pad`. For more details, please refer to
      https://www.tensorflow.org/api_docs/python/tf/pad.
    constant_values: A `scalar`, the pad value to use in "CONSTANT" padding
      mode.
    name: A name for this operation (optional).

  Returns:
    2-D, 3-D or 4-D `Tensor` of the same dtype as input.

  Raises:
    ValueError: If `image` is not 2, 3 or 4-dimensional,
      if `padding` is other than "REFLECT", "CONSTANT" or "SYMMETRIC",
      if `filter_shape` is invalid,
      or if `sigma` is invalid.
  """
  with tf.name_scope(name or 'gaussian_filter2d'):
    if isinstance(sigma, (list, tuple)):
      if len(sigma) != 2:
        raise ValueError('sigma should be a float or a tuple/list of 2 floats')
    else:
      sigma = (sigma,) * 2

    if any(s < 0 for s in sigma):
      raise ValueError('sigma should be greater than or equal to 0.')

    image = tf.convert_to_tensor(image, name='image')
    sigma = tf.convert_to_tensor(sigma, name='sigma')

    original_ndims = tf.rank(image)
    image = to_4d(image)

    # Keep the precision if it's float;
    # otherwise, convert to float32 for computing.
    orig_dtype = image.dtype
    if not image.dtype.is_floating:
      image = tf.cast(image, tf.float32)

    channels = tf.shape(image)[3]
    filter_shape = _normalize_tuple(filter_shape, 2, 'filter_shape')

    sigma = tf.cast(sigma, image.dtype)
    gaussian_kernel_x = _get_gaussian_kernel(sigma[1], filter_shape[1])
    gaussian_kernel_x = gaussian_kernel_x[tf.newaxis, :]

    gaussian_kernel_y = _get_gaussian_kernel(sigma[0], filter_shape[0])
    gaussian_kernel_y = gaussian_kernel_y[:, tf.newaxis]

    gaussian_kernel_2d = _get_gaussian_kernel_2d(
        gaussian_kernel_y, gaussian_kernel_x
    )
    gaussian_kernel_2d = gaussian_kernel_2d[:, :, tf.newaxis, tf.newaxis]
    gaussian_kernel_2d = tf.tile(gaussian_kernel_2d, [1, 1, channels, 1])

    image = _pad(
        image, filter_shape, mode=padding, constant_values=constant_values
    )

    output = tf.nn.depthwise_conv2d(
        input=image,
        filter=gaussian_kernel_2d,
        strides=(1, 1, 1, 1),
        padding='VALID',
    )
    output = from_4d(output, original_ndims)
    return tf.cast(output, orig_dtype)


def _convert_translation_to_transform(translations: tf.Tensor) -> tf.Tensor:
  """Converts translations to a projective transform.

  The translation matrix looks like this:
    [[1 0 -dx]
     [0 1 -dy]
     [0 0 1]]

  Args:
    translations: The 2-element list representing [dx, dy], or a matrix of
      2-element lists representing [dx dy] to translate for each image. The
      shape must be static.

  Returns:
    The transformation matrix of shape (num_images, 8).

  Raises:
    `TypeError` if
      - the shape of `translations` is not known or
      - the shape of `translations` is not rank 1 or 2.

  """
  translations = tf.convert_to_tensor(translations, dtype=tf.float32)
  if translations.get_shape().ndims is None:
    raise TypeError('translations rank must be statically known')
  elif len(translations.get_shape()) == 1:
    translations = translations[None]
  elif len(translations.get_shape()) != 2:
    raise TypeError('translations should have rank 1 or 2.')
  num_translations = tf.shape(translations)[0]

  return tf.concat(
      values=[
          tf.ones((num_translations, 1), tf.dtypes.float32),
          tf.zeros((num_translations, 1), tf.dtypes.float32),
          -translations[:, 0, None],
          tf.zeros((num_translations, 1), tf.dtypes.float32),
          tf.ones((num_translations, 1), tf.dtypes.float32),
          -translations[:, 1, None],
          tf.zeros((num_translations, 2), tf.dtypes.float32),
      ],
      axis=1,
  )


def _convert_angles_to_transform(angles: tf.Tensor, image_width: tf.Tensor,
                                 image_height: tf.Tensor) -> tf.Tensor:
  """Converts an angle or angles to a projective transform.

  Args:
    angles: A scalar to rotate all images, or a vector to rotate a batch of
      images. This must be a scalar.
    image_width: The width of the image(s) to be transformed.
    image_height: The height of the image(s) to be transformed.

  Returns:
    A tensor of shape (num_images, 8).

  Raises:
    `TypeError` if `angles` is not rank 0 or 1.

  """
  angles = tf.convert_to_tensor(angles, dtype=tf.float32)
  if len(angles.get_shape()) == 0:  # pylint:disable=g-explicit-length-test
    angles = angles[None]
  elif len(angles.get_shape()) != 1:
    raise TypeError('Angles should have a rank 0 or 1.')
  x_offset = ((image_width - 1) -
              (tf.math.cos(angles) * (image_width - 1) - tf.math.sin(angles) *
               (image_height - 1))) / 2.0
  y_offset = ((image_height - 1) -
              (tf.math.sin(angles) * (image_width - 1) + tf.math.cos(angles) *
               (image_height - 1))) / 2.0
  num_angles = tf.shape(angles)[0]
  return tf.concat(
      values=[
          tf.math.cos(angles)[:, None],
          -tf.math.sin(angles)[:, None],
          x_offset[:, None],
          tf.math.sin(angles)[:, None],
          tf.math.cos(angles)[:, None],
          y_offset[:, None],
          tf.zeros((num_angles, 2), tf.dtypes.float32),
      ],
      axis=1,
  )


def _apply_transform_to_images(
    images,
    transforms,
    fill_mode='reflect',
    fill_value=0.0,
    interpolation='bilinear',
    output_shape=None,
    name=None,
):
  """Applies the given transform(s) to the image(s).

  Args:
    images: A tensor of shape `(num_images, num_rows, num_columns,
      num_channels)` (NHWC). The rank must be statically known (the shape is
      not `TensorShape(None)`).
    transforms: Projective transform matrix/matrices. A vector of length 8 or
      tensor of size N x 8. If one row of transforms is [a0, a1, a2, b0, b1,
      b2, c0, c1], then it maps the *output* point `(x, y)` to a transformed
      *input* point `(x', y') = ((a0 x + a1 y + a2) / k, (b0 x + b1 y + b2) /
      k)`, where `k = c0 x + c1 y + 1`. The transforms are *inverted* compared
      to the transform mapping input points to output points. Note that
      gradients are not backpropagated into transformation parameters.
    fill_mode: Points outside the boundaries of the input are filled according
      to the given mode (one of `{"constant", "reflect", "wrap", "nearest"}`).
    fill_value: a float represents the value to be filled outside the
      boundaries when `fill_mode="constant"`.
    interpolation: Interpolation mode. Supported values: `"nearest"`,
      `"bilinear"`.
    output_shape: Output dimension after the transform, `[height, width]`. If
      `None`, output is the same size as input image.
    name: The name of the op.  Fill mode behavior for each valid value is as
      follows
      - `"reflect"`: `(d c b a | a b c d | d c b a)` The input is extended by
      reflecting about the edge of the last pixel.
      - `"constant"`: `(k k k k | a b c d | k k k k)` The input is extended by
      filling all values beyond the edge with the same constant value k = 0.
      - `"wrap"`: `(a b c d | a b c d | a b c d)` The input is extended by
      wrapping around to the opposite edge.
      - `"nearest"`: `(a a a a | a b c d | d d d d)` The input is extended by
      the nearest pixel.  Input shape: 4D tensor with shape:
      `(samples, height, width, channels)`, in `"channels_last"` format.
      Output shape: 4D tensor with shape: `(samples, height, width, channels)`,
      in `"channels_last"` format.

  Returns:
    Image(s) with the same type and shape as `images`, with the given
    transform(s) applied. Transformed coordinates outside of the input image
    will be filled with zeros.
  """
  with tf.name_scope(name or 'transform'):
    if output_shape is None:
      output_shape = tf.shape(images)[1:3]
      if not tf.executing_eagerly():
        output_shape_value = tf.get_static_value(output_shape)
        if output_shape_value is not None:
          output_shape = output_shape_value

    output_shape = tf.convert_to_tensor(
        output_shape, tf.int32, name='output_shape'
    )

    if not output_shape.get_shape().is_compatible_with([2]):
      raise ValueError(
          'output_shape must be a 1-D Tensor of 2 elements: '
          'new_height, new_width, instead got '
          f'output_shape={output_shape}'
      )

    fill_value = tf.convert_to_tensor(fill_value, tf.float32, name='fill_value')

    return tf.raw_ops.ImageProjectiveTransformV3(
        images=images,
        output_shape=output_shape,
        fill_value=fill_value,
        transforms=transforms,
        fill_mode=fill_mode.upper(),
        interpolation=interpolation.upper(),
    )


def transform(
    image: tf.Tensor,
    transforms: Any,
    interpolation: str = 'nearest',
    output_shape=None,
    fill_mode: str = 'reflect',
    fill_value: float = 0.0,
) -> tf.Tensor:
  """Transforms an image."""
  original_ndims = tf.rank(image)
  transforms = tf.convert_to_tensor(transforms, dtype=tf.float32)
  if transforms.shape.rank == 1:
    transforms = transforms[None]
  image = to_4d(image)
  image = _apply_transform_to_images(
      images=image,
      transforms=transforms,
      interpolation=interpolation,
      fill_mode=fill_mode,
      fill_value=fill_value,
      output_shape=output_shape,
  )
  return from_4d(image, original_ndims)


def translate(
    image: tf.Tensor,
    translations,
    fill_value: float = 0.0,
    fill_mode: str = 'reflect',
    interpolation: str = 'nearest',
) -> tf.Tensor:
  """Translates image(s) by provided vectors.

  Args:
    image: An image Tensor of type uint8.
    translations: A vector or matrix representing [dx dy].
    fill_value: a float represents the value to be filled outside the boundaries
      when `fill_mode="constant"`.
    fill_mode: Points outside the boundaries of the input are filled according
      to the given mode (one of `{"constant", "reflect", "wrap", "nearest"}`).
    interpolation: Interpolation mode. Supported values: `"nearest"`,
      `"bilinear"`.

  Returns:
    The translated version of the image.
  """
  transforms = _convert_translation_to_transform(translations)  # pytype: disable=wrong-arg-types  # always-use-return-annotations
  return transform(
      image,
      transforms=transforms,
      interpolation=interpolation,
      fill_value=fill_value,
      fill_mode=fill_mode,
  )


def rotate(image: tf.Tensor, degrees: float) -> tf.Tensor:
  """Rotates the image by degrees either clockwise or counterclockwise.

  Args:
    image: An image Tensor of type uint8.
    degrees: Float, a scalar angle in degrees to rotate all images by. If
      degrees is positive the image will be rotated clockwise otherwise it will
      be rotated counterclockwise.

  Returns:
    The rotated version of image.

  """
  # Convert from degrees to radians.
  degrees_to_radians = math.pi / 180.0
  radians = tf.cast(degrees * degrees_to_radians, tf.float32)

  original_ndims = tf.rank(image)
  image = to_4d(image)

  image_height = tf.cast(tf.shape(image)[1], tf.float32)
  image_width = tf.cast(tf.shape(image)[2], tf.float32)
  transforms = _convert_angles_to_transform(
      angles=radians, image_width=image_width, image_height=image_height)
  # In practice, we should randomize the rotation degrees by flipping
  # it negatively half the time, but that's done on 'degrees' outside
  # of the function.
  image = transform(image, transforms=transforms)
  return from_4d(image, original_ndims)


def blend(image1: tf.Tensor, image2: tf.Tensor, factor: float) -> tf.Tensor:
  """Blend image1 and image2 using 'factor'.

  Factor can be above 0.0.  A value of 0.0 means only image1 is used.
  A value of 1.0 means only image2 is used.  A value between 0.0 and
  1.0 means we linearly interpolate the pixel values between the two
  images.  A value greater than 1.0 "extrapolates" the difference
  between the two pixel values, and we clip the results to values
  between 0 and 255.

  Args:
    image1: An image Tensor of type uint8.
    image2: An image Tensor of type uint8.
    factor: A floating point value above 0.0.

  Returns:
    A blended image Tensor of type uint8.
  """
  if factor == 0.0:
    return tf.convert_to_tensor(image1)
  if factor == 1.0:
    return tf.convert_to_tensor(image2)

  image1 = tf.cast(image1, tf.float32)
  image2 = tf.cast(image2, tf.float32)

  difference = image2 - image1
  scaled = factor * difference

  # Do addition in float.
  temp = tf.cast(image1, tf.float32) + scaled

  # Interpolate
  if factor > 0.0 and factor < 1.0:
    # Interpolation means we always stay within 0 and 255.
    return tf.cast(temp, tf.uint8)

  # Extrapolate:
  #
  # We need to clip and then cast.
  return tf.cast(tf.clip_by_value(temp, 0.0, 255.0), tf.uint8)


def cutout(image: tf.Tensor, pad_size: int, replace: int = 0) -> tf.Tensor:
  """Apply cutout (https://arxiv.org/abs/1708.04552) to image.

  This operation applies a (2*pad_size x 2*pad_size) mask of zeros to
  a random location within `image`. The pixel values filled in will be of the
  value `replace`. The location where the mask will be applied is randomly
  chosen uniformly over the whole image.

  Args:
    image: An image Tensor of type uint8.
    pad_size: Specifies how big the zero mask that will be generated is that is
      applied to the image. The mask will be of size (2*pad_size x 2*pad_size).
    replace: What pixel value to fill in the image in the area that has the
      cutout mask applied to it.

  Returns:
    An image Tensor that is of type uint8.
  """
  if image.shape.rank not in [3, 4]:
    raise ValueError('Bad image rank: {}'.format(image.shape.rank))

  if image.shape.rank == 4:
    return cutout_video(image, replace=replace)

  image_height = tf.shape(image)[0]
  image_width = tf.shape(image)[1]

  # Sample the center location in the image where the zero mask will be applied.
  cutout_center_height = tf.random.uniform(
      shape=[], minval=0, maxval=image_height, dtype=tf.int32)

  cutout_center_width = tf.random.uniform(
      shape=[], minval=0, maxval=image_width, dtype=tf.int32)

  image = _fill_rectangle(image, cutout_center_width, cutout_center_height,
                          pad_size, pad_size, replace)

  return image


def _fill_rectangle(image,
                    center_width,
                    center_height,
                    half_width,
                    half_height,
                    replace=None):
  """Fills blank area."""
  image_height = tf.shape(image)[0]
  image_width = tf.shape(image)[1]

  lower_pad = tf.maximum(0, center_height - half_height)
  upper_pad = tf.maximum(0, image_height - center_height - half_height)
  left_pad = tf.maximum(0, center_width - half_width)
  right_pad = tf.maximum(0, image_width - center_width - half_width)

  cutout_shape = [
      image_height - (lower_pad + upper_pad),
      image_width - (left_pad + right_pad)
  ]
  padding_dims = [[lower_pad, upper_pad], [left_pad, right_pad]]
  mask = tf.pad(
      tf.zeros(cutout_shape, dtype=image.dtype),
      padding_dims,
      constant_values=1)
  mask = tf.expand_dims(mask, -1)
  mask = tf.tile(mask, [1, 1, 3])

  if replace is None:
    fill = tf.random.normal(tf.shape(image), dtype=image.dtype)
  elif isinstance(replace, tf.Tensor):
    fill = replace
  else:
    fill = tf.ones_like(image, dtype=image.dtype) * replace
  image = tf.where(tf.equal(mask, 0), fill, image)

  return image


def _fill_rectangle_video(image,
                          center_width,
                          center_height,
                          half_width,
                          half_height,
                          replace=None):
  """Fills blank area for video."""
  image_time = tf.shape(image)[0]
  image_height = tf.shape(image)[1]
  image_width = tf.shape(image)[2]

  lower_pad = tf.maximum(0, center_height - half_height)
  upper_pad = tf.maximum(0, image_height - center_height - half_height)
  left_pad = tf.maximum(0, center_width - half_width)
  right_pad = tf.maximum(0, image_width - center_width - half_width)

  cutout_shape = [
      image_time, image_height - (lower_pad + upper_pad),
      image_width - (left_pad + right_pad)
  ]
  padding_dims = [[0, 0], [lower_pad, upper_pad], [left_pad, right_pad]]
  mask = tf.pad(
      tf.zeros(cutout_shape, dtype=image.dtype),
      padding_dims,
      constant_values=1)
  mask = tf.expand_dims(mask, -1)
  mask = tf.tile(mask, [1, 1, 1, 3])

  if replace is None:
    fill = tf.random.normal(tf.shape(image), dtype=image.dtype)
  elif isinstance(replace, tf.Tensor):
    fill = replace
  else:
    fill = tf.ones_like(image, dtype=image.dtype) * replace
  image = tf.where(tf.equal(mask, 0), fill, image)

  return image


def cutout_video(
    video: tf.Tensor,
    mask_shape: Optional[tf.Tensor] = None,
    replace: int = 0,
) -> tf.Tensor:
  """Apply cutout (https://arxiv.org/abs/1708.04552) to a video.

  This operation applies a random size 3D mask of zeros to a random location
  within `video`. The mask is padded The pixel values filled in will be of the
  value `replace`. The location where the mask will be applied is randomly
  chosen uniformly over the whole video. If the size of the mask is not set,
  then, it is randomly sampled uniformly from [0.25*height, 0.5*height],
  [0.25*width, 0.5*width], and [1, 0.25*depth], which represent the height,
  width, and number of frames of the input video tensor respectively.

  Args:
    video: A video Tensor of shape [T, H, W, C].
    mask_shape: An optional integer tensor that specifies the depth, height and
      width of the mask to cut. If it is not set, the shape is randomly sampled
      as described above. The shape dimensions should be divisible by 2
      otherwise they will rounded down.
    replace: What pixel value to fill in the image in the area that has the
      cutout mask applied to it.

  Returns:
    A video Tensor with cutout applied.
  """
  tf.debugging.assert_shapes([
      (video, ('T', 'H', 'W', 'C')),
  ])

  video_depth = tf.shape(video)[0]
  video_height = tf.shape(video)[1]
  video_width = tf.shape(video)[2]

  # Sample the center location in the image where the zero mask will be applied.
  cutout_center_height = tf.random.uniform(
      shape=[], minval=0, maxval=video_height, dtype=tf.int32
  )

  cutout_center_width = tf.random.uniform(
      shape=[], minval=0, maxval=video_width, dtype=tf.int32
  )

  cutout_center_depth = tf.random.uniform(
      shape=[], minval=0, maxval=video_depth, dtype=tf.int32
  )

  if mask_shape is not None:
    pad_shape = tf.maximum(1, mask_shape // 2)
    pad_size_depth, pad_size_height, pad_size_width = (
        pad_shape[0],
        pad_shape[1],
        pad_shape[2],
    )
  else:
    pad_size_height = tf.random.uniform(
        shape=[],
        minval=tf.maximum(1, tf.cast(video_height / 4, tf.int32)),
        maxval=tf.maximum(2, tf.cast(video_height / 2, tf.int32)),
        dtype=tf.int32,
    )
    pad_size_width = tf.random.uniform(
        shape=[],
        minval=tf.maximum(1, tf.cast(video_width / 4, tf.int32)),
        maxval=tf.maximum(2, tf.cast(video_width / 2, tf.int32)),
        dtype=tf.int32,
    )
    pad_size_depth = tf.random.uniform(
        shape=[],
        minval=1,
        maxval=tf.maximum(2, tf.cast(video_depth / 4, tf.int32)),
        dtype=tf.int32,
    )

  lower_pad = tf.maximum(0, cutout_center_height - pad_size_height)
  upper_pad = tf.maximum(
      0, video_height - cutout_center_height - pad_size_height
  )
  left_pad = tf.maximum(0, cutout_center_width - pad_size_width)
  right_pad = tf.maximum(0, video_width - cutout_center_width - pad_size_width)
  back_pad = tf.maximum(0, cutout_center_depth - pad_size_depth)
  forward_pad = tf.maximum(
      0, video_depth - cutout_center_depth - pad_size_depth
  )

  cutout_shape = [
      video_depth - (back_pad + forward_pad),
      video_height - (lower_pad + upper_pad),
      video_width - (left_pad + right_pad),
  ]
  padding_dims = [[back_pad, forward_pad],
                  [lower_pad, upper_pad],
                  [left_pad, right_pad]]
  mask = tf.pad(
      tf.zeros(cutout_shape, dtype=video.dtype), padding_dims, constant_values=1
  )
  mask = tf.expand_dims(mask, -1)
  num_channels = tf.shape(video)[-1]
  mask = tf.tile(mask, [1, 1, 1, num_channels])
  video = tf.where(
      tf.equal(mask, 0), tf.ones_like(video, dtype=video.dtype) * replace, video
  )
  return video


def gaussian_noise(
    image: tf.Tensor, low: float = 0.1, high: float = 2.0) -> tf.Tensor:
  """Add Gaussian noise to image(s)."""
  augmented_image = gaussian_filter2d(  # pylint: disable=g-long-lambda
      image, filter_shape=[3, 3], sigma=np.random.uniform(low=low, high=high)
  )
  return augmented_image


def solarize(image: tf.Tensor, threshold: int = 128) -> tf.Tensor:
  """Solarize the input image(s)."""
  # For each pixel in the image, select the pixel
  # if the value is less than the threshold.
  # Otherwise, subtract 255 from the pixel.
  return tf.where(image < threshold, image, 255 - image)


def solarize_add(image: tf.Tensor,
                 addition: int = 0,
                 threshold: int = 128) -> tf.Tensor:
  """Additive solarize the input image(s)."""
  # For each pixel in the image less than threshold
  # we add 'addition' amount to it and then clip the
  # pixel value to be between 0 and 255. The value
  # of 'addition' is between -128 and 128.
  added_image = tf.cast(image, tf.int64) + addition
  added_image = tf.cast(tf.clip_by_value(added_image, 0, 255), tf.uint8)
  return tf.where(image < threshold, added_image, image)


def grayscale(image: tf.Tensor) -> tf.Tensor:
  """Convert image to grayscale."""
  return tf.image.grayscale_to_rgb(tf.image.rgb_to_grayscale(image))


def color(image: tf.Tensor, factor: float) -> tf.Tensor:
  """Equivalent of PIL Color."""
  degenerate = grayscale(image)
  return blend(degenerate, image, factor)


def contrast(image: tf.Tensor, factor: float) -> tf.Tensor:
  """Equivalent of PIL Contrast."""
  degenerate = tf.image.rgb_to_grayscale(image)
  # Cast before calling tf.histogram.
  degenerate = tf.cast(degenerate, tf.int32)

  # Compute the grayscale histogram, then compute the mean pixel value,
  # and create a constant image size of that value.  Use that as the
  # blending degenerate target of the original image.
  hist = tf.histogram_fixed_width(degenerate, [0, 255], nbins=256)
  mean = tf.reduce_sum(tf.cast(hist, tf.float32)) / 256.0
  degenerate = tf.ones_like(degenerate, dtype=tf.float32) * mean
  degenerate = tf.clip_by_value(degenerate, 0.0, 255.0)
  degenerate = tf.image.grayscale_to_rgb(tf.cast(degenerate, tf.uint8))
  return blend(degenerate, image, factor)


def brightness(image: tf.Tensor, factor: float) -> tf.Tensor:
  """Equivalent of PIL Brightness."""
  degenerate = tf.zeros_like(image)
  return blend(degenerate, image, factor)


def posterize(image: tf.Tensor, bits: int) -> tf.Tensor:
  """Equivalent of PIL Posterize."""
  shift = 8 - bits
  return tf.bitwise.left_shift(tf.bitwise.right_shift(image, shift), shift)


def wrapped_rotate(image: tf.Tensor, degrees: float, replace: int) -> tf.Tensor:
  """Applies rotation with wrap/unwrap."""
  image = rotate(wrap(image), degrees=degrees)
  return unwrap(image, replace)


def translate_x(image: tf.Tensor, pixels: int, replace: int) -> tf.Tensor:
  """Equivalent of PIL Translate in X dimension."""
  image = translate(wrap(image), [-pixels, 0])
  return unwrap(image, replace)


def translate_y(image: tf.Tensor, pixels: int, replace: int) -> tf.Tensor:
  """Equivalent of PIL Translate in Y dimension."""
  image = translate(wrap(image), [0, -pixels])
  return unwrap(image, replace)


def shear_x(image: tf.Tensor, level: float, replace: int) -> tf.Tensor:
  """Equivalent of PIL Shearing in X dimension."""
  # Shear parallel to x axis is a projective transform
  # with a matrix form of:
  # [1  level
  #  0  1].
  image = transform(
      image=wrap(image), transforms=[1., level, 0., 0., 1., 0., 0., 0.])
  return unwrap(image, replace)


def shear_y(image: tf.Tensor, level: float, replace: int) -> tf.Tensor:
  """Equivalent of PIL Shearing in Y dimension."""
  # Shear parallel to y axis is a projective transform
  # with a matrix form of:
  # [1  0
  #  level  1].
  image = transform(
      image=wrap(image), transforms=[1., 0., 0., level, 1., 0., 0., 0.])
  return unwrap(image, replace)


def autocontrast(image: tf.Tensor) -> tf.Tensor:
  """Implements Autocontrast function from PIL using TF ops.

  Args:
    image: A 3D uint8 tensor.

  Returns:
    The image after it has had autocontrast applied to it and will be of type
    uint8.
  """

  def scale_channel(image: tf.Tensor) -> tf.Tensor:
    """Scale the 2D image using the autocontrast rule."""
    # A possibly cheaper version can be done using cumsum/unique_with_counts
    # over the histogram values, rather than iterating over the entire image.
    # to compute mins and maxes.
    lo = tf.cast(tf.reduce_min(image), tf.float32)
    hi = tf.cast(tf.reduce_max(image), tf.float32)

    # Scale the image, making the lowest value 0 and the highest value 255.
    def scale_values(im):
      scale = 255.0 / (hi - lo)
      offset = -lo * scale
      im = tf.cast(im, tf.float32) * scale + offset
      im = tf.clip_by_value(im, 0.0, 255.0)
      return tf.cast(im, tf.uint8)

    result = tf.cond(hi > lo, lambda: scale_values(image), lambda: image)
    return result

  # Assumes RGB for now.  Scales each channel independently
  # and then stacks the result.
  s1 = scale_channel(image[..., 0])
  s2 = scale_channel(image[..., 1])
  s3 = scale_channel(image[..., 2])
  image = tf.stack([s1, s2, s3], -1)

  return image


def sharpness(image: tf.Tensor, factor: float) -> tf.Tensor:
  """Implements Sharpness function from PIL using TF ops."""
  orig_image = image
  image = tf.cast(image, tf.float32)
  # Make image 4D for conv operation.
  image = tf.expand_dims(image, 0)
  # SMOOTH PIL Kernel.
  if orig_image.shape.rank == 3:
    kernel = tf.constant([[1, 1, 1], [1, 5, 1], [1, 1, 1]],
                         dtype=tf.float32,
                         shape=[3, 3, 1, 1]) / 13.
    # Tile across channel dimension.
    kernel = tf.tile(kernel, [1, 1, 3, 1])
    strides = [1, 1, 1, 1]
    degenerate = tf.nn.depthwise_conv2d(
        image, kernel, strides, padding='VALID', dilations=[1, 1])
  elif orig_image.shape.rank == 4:
    kernel = tf.constant([[1, 1, 1], [1, 5, 1], [1, 1, 1]],
                         dtype=tf.float32,
                         shape=[1, 3, 3, 1, 1]) / 13.
    strides = [1, 1, 1, 1, 1]
    # Run the kernel across each channel
    channels = tf.split(image, 3, axis=-1)
    degenerates = [
        tf.nn.conv3d(channel, kernel, strides, padding='VALID',
                     dilations=[1, 1, 1, 1, 1])
        for channel in channels
    ]
    degenerate = tf.concat(degenerates, -1)
  else:
    raise ValueError('Bad image rank: {}'.format(image.shape.rank))
  degenerate = tf.clip_by_value(degenerate, 0.0, 255.0)
  degenerate = tf.squeeze(tf.cast(degenerate, tf.uint8), [0])

  # For the borders of the resulting image, fill in the values of the
  # original image.
  mask = tf.ones_like(degenerate)
  paddings = [[0, 0]] * (orig_image.shape.rank - 3)
  padded_mask = tf.pad(mask, paddings + [[1, 1], [1, 1], [0, 0]])
  padded_degenerate = tf.pad(degenerate, paddings + [[1, 1], [1, 1], [0, 0]])
  result = tf.where(tf.equal(padded_mask, 1), padded_degenerate, orig_image)

  # Blend the final result.
  return blend(result, orig_image, factor)


def equalize(image: tf.Tensor) -> tf.Tensor:
  """Implements Equalize function from PIL using TF ops."""

  def scale_channel(im, c):
    """Scale the data in the channel to implement equalize."""
    im = tf.cast(im[..., c], tf.int32)
    # Compute the histogram of the image channel.
    histo = tf.histogram_fixed_width(im, [0, 255], nbins=256)

    # For the purposes of computing the step, filter out the nonzeros.
    nonzero = tf.where(tf.not_equal(histo, 0))
    nonzero_histo = tf.reshape(tf.gather(histo, nonzero), [-1])
    step = (tf.reduce_sum(nonzero_histo) - nonzero_histo[-1]) // 255

    def build_lut(histo, step):
      # Compute the cumulative sum, shifting by step // 2
      # and then normalization by step.
      lut = (tf.cumsum(histo) + (step // 2)) // step
      # Shift lut, prepending with 0.
      lut = tf.concat([[0], lut[:-1]], 0)
      # Clip the counts to be in range.  This is done
      # in the C code for image.point.
      return tf.clip_by_value(lut, 0, 255)

    # If step is zero, return the original image.  Otherwise, build
    # lut from the full histogram and step and then index from it.
    result = tf.cond(
        tf.equal(step, 0), lambda: im,
        lambda: tf.gather(build_lut(histo, step), im))

    return tf.cast(result, tf.uint8)

  # Assumes RGB for now.  Scales each channel independently
  # and then stacks the result.
  s1 = scale_channel(image, 0)
  s2 = scale_channel(image, 1)
  s3 = scale_channel(image, 2)
  image = tf.stack([s1, s2, s3], -1)
  return image


def invert(image: tf.Tensor) -> tf.Tensor:
  """Inverts the image pixels."""
  image = tf.convert_to_tensor(image)
  return 255 - image


def wrap(image: tf.Tensor) -> tf.Tensor:
  """Returns 'image' with an extra channel set to all 1s."""
  shape = tf.shape(image)
  extended_channel = tf.expand_dims(tf.ones(shape[:-1], image.dtype), -1)
  extended = tf.concat([image, extended_channel], axis=-1)
  return extended


def unwrap(image: tf.Tensor, replace: int) -> tf.Tensor:
  """Unwraps an image produced by wrap.

  Where there is a 0 in the last channel for every spatial position,
  the rest of the three channels in that spatial dimension are grayed
  (set to 128).  Operations like translate and shear on a wrapped
  Tensor will leave 0s in empty locations.  Some transformations look
  at the intensity of values to do preprocessing, and we want these
  empty pixels to assume the 'average' value, rather than pure black.


  Args:
    image: A 3D Image Tensor with 4 channels.
    replace: A one or three value 1D tensor to fill empty pixels.

  Returns:
    image: A 3D image Tensor with 3 channels.
  """
  image_shape = tf.shape(image)
  # Flatten the spatial dimensions.
  flattened_image = tf.reshape(image, [-1, image_shape[-1]])

  # Find all pixels where the last channel is zero.
  alpha_channel = tf.expand_dims(flattened_image[..., 3], axis=-1)

  replace = tf.concat([replace, tf.ones([1], image.dtype)], 0)

  # Where they are zero, fill them in with 'replace'.
  flattened_image = tf.where(
      tf.equal(alpha_channel, 0),
      tf.ones_like(flattened_image, dtype=image.dtype) * replace,
      flattened_image)

  image = tf.reshape(flattened_image, image_shape)
  image = tf.slice(
      image,
      [0] * image.shape.rank,
      tf.concat([image_shape[:-1], [3]], -1))
  return image


def _scale_bbox_only_op_probability(prob):
  """Reduce the probability of the bbox-only operation.

  Probability is reduced so that we do not distort the content of too many
  bounding boxes that are close to each other. The value of 3.0 was a chosen
  hyper parameter when designing the autoaugment algorithm that we found
  empirically to work well.

  Args:
    prob: Float that is the probability of applying the bbox-only operation.

  Returns:
    Reduced probability.
  """
  return prob / 3.0


def _apply_bbox_augmentation(image, bbox, augmentation_func, *args):
  """Applies augmentation_func to the subsection of image indicated by bbox.

  Args:
    image: 3D uint8 Tensor.
    bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x)
      of type float that represents the normalized coordinates between 0 and 1.
    augmentation_func: Augmentation function that will be applied to the
      subsection of image.
    *args: Additional parameters that will be passed into augmentation_func
      when it is called.

  Returns:
    A modified version of image, where the bbox location in the image will
    have `ugmentation_func applied to it.
  """
  image_height = tf.cast(tf.shape(image)[0], tf.float32)
  image_width = tf.cast(tf.shape(image)[1], tf.float32)
  min_y = tf.cast(image_height * bbox[0], tf.int32)
  min_x = tf.cast(image_width * bbox[1], tf.int32)
  max_y = tf.cast(image_height * bbox[2], tf.int32)
  max_x = tf.cast(image_width * bbox[3], tf.int32)
  image_height = tf.cast(image_height, tf.int32)
  image_width = tf.cast(image_width, tf.int32)

  # Clip to be sure the max values do not fall out of range.
  max_y = tf.minimum(max_y, image_height - 1)
  max_x = tf.minimum(max_x, image_width - 1)

  # Get the sub-tensor that is the image within the bounding box region.
  bbox_content = image[min_y:max_y + 1, min_x:max_x + 1, :]

  # Apply the augmentation function to the bbox portion of the image.
  augmented_bbox_content = augmentation_func(bbox_content, *args)

  # Pad the augmented_bbox_content and the mask to match the shape of original
  # image.
  augmented_bbox_content = tf.pad(augmented_bbox_content,
                                  [[min_y, (image_height - 1) - max_y],
                                   [min_x, (image_width - 1) - max_x],
                                   [0, 0]])

  # Create a mask that will be used to zero out a part of the original image.
  mask_tensor = tf.zeros_like(bbox_content)

  mask_tensor = tf.pad(mask_tensor,
                       [[min_y, (image_height - 1) - max_y],
                        [min_x, (image_width - 1) - max_x],
                        [0, 0]],
                       constant_values=1)
  # Replace the old bbox content with the new augmented content.
  image = image * mask_tensor + augmented_bbox_content
  return image


def _concat_bbox(bbox, bboxes):
  """Helper function that concates bbox to bboxes along the first dimension."""

  # Note if all elements in bboxes are -1 (_INVALID_BOX), then this means
  # we discard bboxes and start the bboxes Tensor with the current bbox.
  bboxes_sum_check = tf.reduce_sum(bboxes)
  bbox = tf.expand_dims(bbox, 0)
  # This check will be true when it is an _INVALID_BOX
  bboxes = tf.cond(tf.equal(bboxes_sum_check, -4.0),
                   lambda: bbox,
                   lambda: tf.concat([bboxes, bbox], 0))
  return bboxes


def _apply_bbox_augmentation_wrapper(image, bbox, new_bboxes, prob,
                                     augmentation_func, func_changes_bbox,
                                     *args):
  """Applies _apply_bbox_augmentation with probability prob.

  Args:
    image: 3D uint8 Tensor.
    bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x)
      of type float that represents the normalized coordinates between 0 and 1.
    new_bboxes: 2D Tensor that is a list of the bboxes in the image after they
      have been altered by aug_func. These will only be changed when
      func_changes_bbox is set to true. Each bbox has 4 elements
      (min_y, min_x, max_y, max_x) of type float that are the normalized
      bbox coordinates between 0 and 1.
    prob: Float that is the probability of applying _apply_bbox_augmentation.
    augmentation_func: Augmentation function that will be applied to the
      subsection of image.
    func_changes_bbox: Boolean. Does augmentation_func return bbox in addition
      to image.
    *args: Additional parameters that will be passed into augmentation_func
      when it is called.

  Returns:
    A tuple. Fist element is a modified version of image, where the bbox
    location in the image will have augmentation_func applied to it if it is
    chosen to be called with probability `prob`. The second element is a
    Tensor of Tensors of length 4 that will contain the altered bbox after
    applying augmentation_func.
  """
  should_apply_op = tf.cast(
      tf.floor(tf.random.uniform([], dtype=tf.float32) + prob), tf.bool)
  if func_changes_bbox:
    augmented_image, bbox = tf.cond(
        should_apply_op,
        lambda: augmentation_func(image, bbox, *args),
        lambda: (image, bbox))
  else:
    augmented_image = tf.cond(
        should_apply_op,
        lambda: _apply_bbox_augmentation(image, bbox, augmentation_func, *args),
        lambda: image)
  new_bboxes = _concat_bbox(bbox, new_bboxes)
  return augmented_image, new_bboxes


def _apply_multi_bbox_augmentation_wrapper(image, bboxes, prob, aug_func,
                                           func_changes_bbox, *args):
  """Checks to be sure num bboxes > 0 before calling inner function."""
  num_bboxes = tf.shape(bboxes)[0]
  image, bboxes = tf.cond(
      tf.equal(num_bboxes, 0),
      lambda: (image, bboxes),
      # pylint:disable=g-long-lambda
      lambda: _apply_multi_bbox_augmentation(
          image, bboxes, prob, aug_func, func_changes_bbox, *args))
  # pylint:enable=g-long-lambda
  return image, bboxes


# Represents an invalid bounding box that is used for checking for padding
# lists of bounding box coordinates for a few augmentation operations
_INVALID_BOX = [[-1.0, -1.0, -1.0, -1.0]]


def _apply_multi_bbox_augmentation(image, bboxes, prob, aug_func,
                                   func_changes_bbox, *args):
  """Applies aug_func to the image for each bbox in bboxes.

  Args:
    image: 3D uint8 Tensor.
    bboxes: 2D Tensor that is a list of the bboxes in the image. Each bbox
      has 4 elements (min_y, min_x, max_y, max_x) of type float.
    prob: Float that is the probability of applying aug_func to a specific
      bounding box within the image.
    aug_func: Augmentation function that will be applied to the
      subsections of image indicated by the bbox values in bboxes.
    func_changes_bbox: Boolean. Does augmentation_func return bbox in addition
      to image.
    *args: Additional parameters that will be passed into augmentation_func
      when it is called.

  Returns:
    A modified version of image, where each bbox location in the image will
    have augmentation_func applied to it if it is chosen to be called with
    probability prob independently across all bboxes. Also the final
    bboxes are returned that will be unchanged if func_changes_bbox is set to
    false and if true, the new altered ones will be returned.

  Raises:
    ValueError if applied to video.
  """
  if image.shape.rank == 4:
    raise ValueError('Image rank 4 is not supported')

  # Will keep track of the new altered bboxes after aug_func is repeatedly
  # applied. The -1 values are a dummy value and this first Tensor will be
  # removed upon appending the first real bbox.
  new_bboxes = tf.constant(_INVALID_BOX)

  # If the bboxes are empty, then just give it _INVALID_BOX. The result
  # will be thrown away.
  bboxes = tf.cond(tf.equal(tf.size(bboxes), 0),
                   lambda: tf.constant(_INVALID_BOX),
                   lambda: bboxes)

  bboxes = tf.ensure_shape(bboxes, (None, 4))

  # pylint:disable=g-long-lambda
  wrapped_aug_func = (
      lambda _image, bbox, _new_bboxes: _apply_bbox_augmentation_wrapper(
          _image, bbox, _new_bboxes, prob, aug_func, func_changes_bbox, *args))
  # pylint:enable=g-long-lambda

  # Setup the while_loop.
  num_bboxes = tf.shape(bboxes)[0]  # We loop until we go over all bboxes.
  idx = tf.constant(0)  # Counter for the while loop.

  # Conditional function when to end the loop once we go over all bboxes
  # images_and_bboxes contain (_image, _new_bboxes)
  cond = lambda _idx, _images_and_bboxes: tf.less(_idx, num_bboxes)

  # Shuffle the bboxes so that the augmentation order is not deterministic if
  # we are not changing the bboxes with aug_func.
  if not func_changes_bbox:
    loop_bboxes = tf.random.shuffle(bboxes)
  else:
    loop_bboxes = bboxes

  # Main function of while_loop where we repeatedly apply augmentation on the
  # bboxes in the image.
  # pylint:disable=g-long-lambda
  body = lambda _idx, _images_and_bboxes: [
      _idx + 1, wrapped_aug_func(_images_and_bboxes[0],
                                 loop_bboxes[_idx],
                                 _images_and_bboxes[1])]
  # pylint:enable=g-long-lambda

  _, (image, new_bboxes) = tf.while_loop(
      cond, body, [idx, (image, new_bboxes)],
      shape_invariants=[idx.get_shape(),
                        (image.get_shape(), tf.TensorShape([None, 4]))])

  # Either return the altered bboxes or the original ones depending on if
  # we altered them in anyway.
  if func_changes_bbox:
    final_bboxes = new_bboxes
  else:
    final_bboxes = bboxes
  return image, final_bboxes


def _clip_bbox(min_y, min_x, max_y, max_x):
  """Clip bounding box coordinates between 0 and 1.

  Args:
    min_y: Normalized bbox coordinate of type float between 0 and 1.
    min_x: Normalized bbox coordinate of type float between 0 and 1.
    max_y: Normalized bbox coordinate of type float between 0 and 1.
    max_x: Normalized bbox coordinate of type float between 0 and 1.

  Returns:
    Clipped coordinate values between 0 and 1.
  """
  min_y = tf.clip_by_value(min_y, 0.0, 1.0)
  min_x = tf.clip_by_value(min_x, 0.0, 1.0)
  max_y = tf.clip_by_value(max_y, 0.0, 1.0)
  max_x = tf.clip_by_value(max_x, 0.0, 1.0)
  return min_y, min_x, max_y, max_x


def _check_bbox_area(min_y, min_x, max_y, max_x, delta=0.05):
  """Adjusts bbox coordinates to make sure the area is > 0.

  Args:
    min_y: Normalized bbox coordinate of type float between 0 and 1.
    min_x: Normalized bbox coordinate of type float between 0 and 1.
    max_y: Normalized bbox coordinate of type float between 0 and 1.
    max_x: Normalized bbox coordinate of type float between 0 and 1.
    delta: Float, this is used to create a gap of size 2 * delta between
      bbox min/max coordinates that are the same on the boundary.
      This prevents the bbox from having an area of zero.

  Returns:
    Tuple of new bbox coordinates between 0 and 1 that will now have a
    guaranteed area > 0.
  """
  height = max_y - min_y
  width = max_x - min_x
  def _adjust_bbox_boundaries(min_coord, max_coord):
    # Make sure max is never 0 and min is never 1.
    max_coord = tf.maximum(max_coord, 0.0 + delta)
    min_coord = tf.minimum(min_coord, 1.0 - delta)
    return min_coord, max_coord
  min_y, max_y = tf.cond(tf.equal(height, 0.0),
                         lambda: _adjust_bbox_boundaries(min_y, max_y),
                         lambda: (min_y, max_y))
  min_x, max_x = tf.cond(tf.equal(width, 0.0),
                         lambda: _adjust_bbox_boundaries(min_x, max_x),
                         lambda: (min_x, max_x))
  return min_y, min_x, max_y, max_x


def _rotate_bbox(bbox, image_height, image_width, degrees):
  """Rotates the bbox coordinated by degrees.

  Args:
    bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x)
      of type float that represents the normalized coordinates between 0 and 1.
    image_height: Int, height of the image.
    image_width: Int, height of the image.
    degrees: Float, a scalar angle in degrees to rotate all images by. If
      degrees is positive the image will be rotated clockwise otherwise it will
      be rotated counterclockwise.

  Returns:
    A tensor of the same shape as bbox, but now with the rotated coordinates.
  """
  image_height, image_width = (
      tf.cast(image_height, tf.float32), tf.cast(image_width, tf.float32))

  # Convert from degrees to radians.
  degrees_to_radians = math.pi / 180.0
  radians = degrees * degrees_to_radians

  # Translate the bbox to the center of the image and turn the normalized 0-1
  # coordinates to absolute pixel locations.
  # Y coordinates are made negative as the y axis of images goes down with
  # increasing pixel values, so we negate to make sure x axis and y axis points
  # are in the traditionally positive direction.
  min_y = -tf.cast(image_height * (bbox[0] - 0.5), tf.int32)
  min_x = tf.cast(image_width * (bbox[1] - 0.5), tf.int32)
  max_y = -tf.cast(image_height * (bbox[2] - 0.5), tf.int32)
  max_x = tf.cast(image_width * (bbox[3] - 0.5), tf.int32)
  coordinates = tf.stack(
      [[min_y, min_x], [min_y, max_x], [max_y, min_x], [max_y, max_x]])
  coordinates = tf.cast(coordinates, tf.float32)
  # Rotate the coordinates according to the rotation matrix clockwise if
  # radians is positive, else negative
  rotation_matrix = tf.stack(
      [[tf.cos(radians), tf.sin(radians)],
       [-tf.sin(radians), tf.cos(radians)]])
  new_coords = tf.cast(
      tf.matmul(rotation_matrix, tf.transpose(coordinates)), tf.int32)
  # Find min/max values and convert them back to normalized 0-1 floats.
  min_y = -(
      tf.cast(tf.reduce_max(new_coords[0, :]), tf.float32) / image_height - 0.5)
  min_x = tf.cast(tf.reduce_min(new_coords[1, :]),
                  tf.float32) / image_width + 0.5
  max_y = -(
      tf.cast(tf.reduce_min(new_coords[0, :]), tf.float32) / image_height - 0.5)
  max_x = tf.cast(tf.reduce_max(new_coords[1, :]),
                  tf.float32) / image_width + 0.5

  # Clip the bboxes to be sure the fall between [0, 1].
  min_y, min_x, max_y, max_x = _clip_bbox(min_y, min_x, max_y, max_x)
  min_y, min_x, max_y, max_x = _check_bbox_area(min_y, min_x, max_y, max_x)
  return tf.stack([min_y, min_x, max_y, max_x])


def rotate_with_bboxes(image, bboxes, degrees, replace):
  """Equivalent of PIL Rotate that rotates the image and bbox.

  Args:
    image: 3D uint8 Tensor.
    bboxes: 2D Tensor that is a list of the bboxes in the image. Each bbox
      has 4 elements (min_y, min_x, max_y, max_x) of type float.
    degrees: Float, a scalar angle in degrees to rotate all images by. If
      degrees is positive the image will be rotated clockwise otherwise it will
      be rotated counterclockwise.
    replace: A one or three value 1D tensor to fill empty pixels.

  Returns:
    A tuple containing a 3D uint8 Tensor that will be the result of rotating
    image by degrees. The second element of the tuple is bboxes, where now
    the coordinates will be shifted to reflect the rotated image.

  Raises:
    ValueError: If applied to video.
  """
  if image.shape.rank == 4:
    raise ValueError('Image rank 4 is not supported')

  # Rotate the image.
  image = wrapped_rotate(image, degrees, replace)

  # Convert bbox coordinates to pixel values.
  image_height = tf.shape(image)[0]
  image_width = tf.shape(image)[1]
  # pylint:disable=g-long-lambda
  wrapped_rotate_bbox = lambda bbox: _rotate_bbox(
      bbox, image_height, image_width, degrees)
  # pylint:enable=g-long-lambda
  bboxes = tf.map_fn(wrapped_rotate_bbox, bboxes)
  return image, bboxes


def _shear_bbox(bbox, image_height, image_width, level, shear_horizontal):
  """Shifts the bbox according to how the image was sheared.

  Args:
    bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x)
      of type float that represents the normalized coordinates between 0 and 1.
    image_height: Int, height of the image.
    image_width: Int, height of the image.
    level: Float. How much to shear the image.
    shear_horizontal: If true then shear in X dimension else shear in
      the Y dimension.

  Returns:
    A tensor of the same shape as bbox, but now with the shifted coordinates.
  """
  image_height, image_width = (
      tf.cast(image_height, tf.float32), tf.cast(image_width, tf.float32))

  # Change bbox coordinates to be pixels.
  min_y = tf.cast(image_height * bbox[0], tf.int32)
  min_x = tf.cast(image_width * bbox[1], tf.int32)
  max_y = tf.cast(image_height * bbox[2], tf.int32)
  max_x = tf.cast(image_width * bbox[3], tf.int32)
  coordinates = tf.stack(
      [[min_y, min_x], [min_y, max_x], [max_y, min_x], [max_y, max_x]])
  coordinates = tf.cast(coordinates, tf.float32)

  # Shear the coordinates according to the translation matrix.
  if shear_horizontal:
    translation_matrix = tf.stack(
        [[1, 0], [-level, 1]])
  else:
    translation_matrix = tf.stack(
        [[1, -level], [0, 1]])
  translation_matrix = tf.cast(translation_matrix, tf.float32)
  new_coords = tf.cast(
      tf.matmul(translation_matrix, tf.transpose(coordinates)), tf.int32)

  # Find min/max values and convert them back to floats.
  min_y = tf.cast(tf.reduce_min(new_coords[0, :]), tf.float32) / image_height
  min_x = tf.cast(tf.reduce_min(new_coords[1, :]), tf.float32) / image_width
  max_y = tf.cast(tf.reduce_max(new_coords[0, :]), tf.float32) / image_height
  max_x = tf.cast(tf.reduce_max(new_coords[1, :]), tf.float32) / image_width

  # Clip the bboxes to be sure the fall between [0, 1].
  min_y, min_x, max_y, max_x = _clip_bbox(min_y, min_x, max_y, max_x)
  min_y, min_x, max_y, max_x = _check_bbox_area(min_y, min_x, max_y, max_x)
  return tf.stack([min_y, min_x, max_y, max_x])


def shear_with_bboxes(image, bboxes, level, replace, shear_horizontal):
  """Applies Shear Transformation to the image and shifts the bboxes.

  Args:
    image: 3D uint8 Tensor.
    bboxes: 2D Tensor that is a list of the bboxes in the image. Each bbox
      has 4 elements (min_y, min_x, max_y, max_x) of type float with values
      between [0, 1].
    level: Float. How much to shear the image. This value will be between
      -0.3 to 0.3.
    replace: A one or three value 1D tensor to fill empty pixels.
    shear_horizontal: Boolean. If true then shear in X dimension else shear in
      the Y dimension.

  Returns:
    A tuple containing a 3D uint8 Tensor that will be the result of shearing
    image by level. The second element of the tuple is bboxes, where now
    the coordinates will be shifted to reflect the sheared image.

  Raises:
    ValueError: If applied to video.
  """
  if image.shape.rank == 4:
    raise ValueError('Image rank 4 is not supported')

  if shear_horizontal:
    image = shear_x(image, level, replace)
  else:
    image = shear_y(image, level, replace)

  # Convert bbox coordinates to pixel values.
  image_height = tf.shape(image)[0]
  image_width = tf.shape(image)[1]
  # pylint:disable=g-long-lambda
  wrapped_shear_bbox = lambda bbox: _shear_bbox(
      bbox, image_height, image_width, level, shear_horizontal)
  # pylint:enable=g-long-lambda
  bboxes = tf.map_fn(wrapped_shear_bbox, bboxes)
  return image, bboxes


def _shift_bbox(bbox, image_height, image_width, pixels, shift_horizontal):
  """Shifts the bbox coordinates by pixels.

  Args:
    bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x)
      of type float that represents the normalized coordinates between 0 and 1.
    image_height: Int, height of the image.
    image_width: Int, width of the image.
    pixels: An int. How many pixels to shift the bbox.
    shift_horizontal: Boolean. If true then shift in X dimension else shift in
      Y dimension.

  Returns:
    A tensor of the same shape as bbox, but now with the shifted coordinates.
  """
  pixels = tf.cast(pixels, tf.int32)
  # Convert bbox to integer pixel locations.
  min_y = tf.cast(tf.cast(image_height, tf.float32) * bbox[0], tf.int32)
  min_x = tf.cast(tf.cast(image_width, tf.float32) * bbox[1], tf.int32)
  max_y = tf.cast(tf.cast(image_height, tf.float32) * bbox[2], tf.int32)
  max_x = tf.cast(tf.cast(image_width, tf.float32) * bbox[3], tf.int32)

  if shift_horizontal:
    min_x = tf.maximum(0, min_x - pixels)
    max_x = tf.minimum(image_width, max_x - pixels)
  else:
    min_y = tf.maximum(0, min_y - pixels)
    max_y = tf.minimum(image_height, max_y - pixels)

  # Convert bbox back to floats.
  min_y = tf.cast(min_y, tf.float32) / tf.cast(image_height, tf.float32)
  min_x = tf.cast(min_x, tf.float32) / tf.cast(image_width, tf.float32)
  max_y = tf.cast(max_y, tf.float32) / tf.cast(image_height, tf.float32)
  max_x = tf.cast(max_x, tf.float32) / tf.cast(image_width, tf.float32)

  # Clip the bboxes to be sure the fall between [0, 1].
  min_y, min_x, max_y, max_x = _clip_bbox(min_y, min_x, max_y, max_x)
  min_y, min_x, max_y, max_x = _check_bbox_area(min_y, min_x, max_y, max_x)
  return tf.stack([min_y, min_x, max_y, max_x])


def translate_bbox(image, bboxes, pixels, replace, shift_horizontal):
  """Equivalent of PIL Translate in X/Y dimension that shifts image and bbox.

  Args:
    image: 3D uint8 Tensor.
    bboxes: 2D Tensor that is a list of the bboxes in the image. Each bbox
      has 4 elements (min_y, min_x, max_y, max_x) of type float with values
      between [0, 1].
    pixels: An int. How many pixels to shift the image and bboxes
    replace: A one or three value 1D tensor to fill empty pixels.
    shift_horizontal: Boolean. If true then shift in X dimension else shift in
      Y dimension.

  Returns:
    A tuple containing a 3D uint8 Tensor that will be the result of translating
    image by pixels. The second element of the tuple is bboxes, where now
    the coordinates will be shifted to reflect the shifted image.

  Raises:
    ValueError if applied to video.
  """
  if image.shape.rank == 4:
    raise ValueError('Image rank 4 is not supported')

  if shift_horizontal:
    image = translate_x(image, pixels, replace)
  else:
    image = translate_y(image, pixels, replace)

  # Convert bbox coordinates to pixel values.
  image_height = tf.shape(image)[0]
  image_width = tf.shape(image)[1]
  # pylint:disable=g-long-lambda
  wrapped_shift_bbox = lambda bbox: _shift_bbox(
      bbox, image_height, image_width, pixels, shift_horizontal)
  # pylint:enable=g-long-lambda
  bboxes = tf.map_fn(wrapped_shift_bbox, bboxes)
  return image, bboxes


def translate_y_only_bboxes(
    image: tf.Tensor, bboxes: tf.Tensor, prob: float, pixels: int, replace):
  """Apply translate_y to each bbox in the image with probability prob."""
  if bboxes.shape.rank == 4:
    raise ValueError('translate_y_only_bboxes does not support rank 4 boxes')

  func_changes_bbox = False
  prob = _scale_bbox_only_op_probability(prob)
  return _apply_multi_bbox_augmentation_wrapper(
      image, bboxes, prob, translate_y, func_changes_bbox, pixels, replace)


def _randomly_negate_tensor(tensor):
  """With 50% prob turn the tensor negative."""
  should_flip = tf.cast(tf.floor(tf.random.uniform([]) + 0.5), tf.bool)
  final_tensor = tf.cond(should_flip, lambda: tensor, lambda: -tensor)
  return final_tensor


def _rotate_level_to_arg(level: float):
  level = (level / _MAX_LEVEL) * 30.
  level = _randomly_negate_tensor(level)
  return (level,)


def _shrink_level_to_arg(level: float):
  """Converts level to ratio by which we shrink the image content."""
  if level == 0:
    return (1.0,)  # if level is zero, do not shrink the image
  # Maximum shrinking ratio is 2.9.
  level = 2. / (_MAX_LEVEL / level) + 0.9
  return (level,)


def _enhance_level_to_arg(level: float):
  return ((level / _MAX_LEVEL) * 1.8 + 0.1,)


def _shear_level_to_arg(level: float):
  level = (level / _MAX_LEVEL) * 0.3
  # Flip level to negative with 50% chance.
  level = _randomly_negate_tensor(level)
  return (level,)


def _translate_level_to_arg(level: float, translate_const: float):
  level = (level / _MAX_LEVEL) * float(translate_const)
  # Flip level to negative with 50% chance.
  level = _randomly_negate_tensor(level)
  return (level,)


def _gaussian_noise_level_to_arg(level: float, translate_const: float):
  low_std = (level / _MAX_LEVEL)
  high_std = translate_const * low_std
  return low_std, high_std


def _mult_to_arg(level: float, multiplier: float = 1.):
  return (int((level / _MAX_LEVEL) * multiplier),)


def _apply_func_with_prob(func: Any, image: tf.Tensor,
                          bboxes: Optional[tf.Tensor], args: Any, prob: float):
  """Apply `func` to image w/ `args` as input with probability `prob`."""
  assert isinstance(args, tuple)
  assert inspect.getfullargspec(func)[0][1] == 'bboxes'

  # Apply the function with probability `prob`.
  should_apply_op = tf.cast(
      tf.floor(tf.random.uniform([], dtype=tf.float32) + prob), tf.bool)
  augmented_image, augmented_bboxes = tf.cond(
      should_apply_op,
      lambda: func(image, bboxes, *args),
      lambda: (image, bboxes))
  return augmented_image, augmented_bboxes


def select_and_apply_random_policy(
    policies: Any, image: tf.Tensor, bboxes: Optional[tf.Tensor] = None
) -> Tuple[tf.Tensor, Optional[tf.Tensor]]:
  """Select a random policy from `policies` and apply it to `image`."""
  policy_to_select = tf.random.uniform([], maxval=len(policies), dtype=tf.int32)
  # Note that using tf.case instead of tf.conds would result in significantly
  # larger graphs and would even break export for some larger policies.
  for (i, policy) in enumerate(policies):
    image, bboxes = tf.cond(
        tf.equal(i, policy_to_select),
        lambda selected_policy=policy: selected_policy(image, bboxes),
        lambda: (image, bboxes))
  return image, bboxes


NAME_TO_FUNC = {
    'AutoContrast': autocontrast,
    'Equalize': equalize,
    'Invert': invert,
    'Rotate': wrapped_rotate,
    'Posterize': posterize,
    'Solarize': solarize,
    'SolarizeAdd': solarize_add,
    'Color': color,
    'Contrast': contrast,
    'Brightness': brightness,
    'Sharpness': sharpness,
    'ShearX': shear_x,
    'ShearY': shear_y,
    'TranslateX': translate_x,
    'TranslateY': translate_y,
    'Cutout': cutout,
    'Rotate_BBox': rotate_with_bboxes,
    'Grayscale': grayscale,
    'Gaussian_Noise': gaussian_noise,
    # pylint:disable=g-long-lambda
    'ShearX_BBox': lambda image, bboxes, level, replace: shear_with_bboxes(
        image, bboxes, level, replace, shear_horizontal=True),
    'ShearY_BBox': lambda image, bboxes, level, replace: shear_with_bboxes(
        image, bboxes, level, replace, shear_horizontal=False),
    'TranslateX_BBox': lambda image, bboxes, pixels, replace: translate_bbox(
        image, bboxes, pixels, replace, shift_horizontal=True),
    'TranslateY_BBox': lambda image, bboxes, pixels, replace: translate_bbox(
        image, bboxes, pixels, replace, shift_horizontal=False),
    # pylint:enable=g-long-lambda
    'TranslateY_Only_BBoxes': translate_y_only_bboxes,
}

# Functions that require a `bboxes` parameter.
REQUIRE_BOXES_FUNCS = frozenset({
    'Rotate_BBox',
    'ShearX_BBox',
    'ShearY_BBox',
    'TranslateX_BBox',
    'TranslateY_BBox',
    'TranslateY_Only_BBoxes',
})

# Functions that have a 'prob' parameter
PROB_FUNCS = frozenset({
    'TranslateY_Only_BBoxes',
})

# Functions that have a 'replace' parameter
REPLACE_FUNCS = frozenset({
    'Rotate',
    'TranslateX',
    'ShearX',
    'ShearY',
    'TranslateY',
    'Cutout',
    'Rotate_BBox',
    'ShearX_BBox',
    'ShearY_BBox',
    'TranslateX_BBox',
    'TranslateY_BBox',
    'TranslateY_Only_BBoxes',
})


def level_to_arg(cutout_const: float, translate_const: float):
  """Creates a dict mapping image operation names to their arguments."""

  no_arg = lambda level: ()
  posterize_arg = lambda level: _mult_to_arg(level, 4)
  solarize_arg = lambda level: _mult_to_arg(level, 256)
  solarize_add_arg = lambda level: _mult_to_arg(level, 110)
  cutout_arg = lambda level: _mult_to_arg(level, cutout_const)
  translate_arg = lambda level: _translate_level_to_arg(level, translate_const)
  translate_bbox_arg = lambda level: _translate_level_to_arg(level, 120)

  args = {
      'AutoContrast': no_arg,
      'Equalize': no_arg,
      'Invert': no_arg,
      'Rotate': _rotate_level_to_arg,
      'Posterize': posterize_arg,
      'Solarize': solarize_arg,
      'SolarizeAdd': solarize_add_arg,
      'Color': _enhance_level_to_arg,
      'Contrast': _enhance_level_to_arg,
      'Brightness': _enhance_level_to_arg,
      'Sharpness': _enhance_level_to_arg,
      'ShearX': _shear_level_to_arg,
      'ShearY': _shear_level_to_arg,
      'Cutout': cutout_arg,
      'TranslateX': translate_arg,
      'TranslateY': translate_arg,
      'Rotate_BBox': _rotate_level_to_arg,
      'ShearX_BBox': _shear_level_to_arg,
      'ShearY_BBox': _shear_level_to_arg,
      'Grayscale': no_arg,
      # pylint:disable=g-long-lambda
      'Gaussian_Noise': lambda level: _gaussian_noise_level_to_arg(
          level, translate_const),
      # pylint:disable=g-long-lambda
      'TranslateX_BBox': lambda level: _translate_level_to_arg(
          level, translate_const),
      'TranslateY_BBox': lambda level: _translate_level_to_arg(
          level, translate_const),
      # pylint:enable=g-long-lambda
      'TranslateY_Only_BBoxes': translate_bbox_arg,
  }
  return args


def bbox_wrapper(func):
  """Adds a bboxes function argument to func and returns unchanged bboxes."""
  def wrapper(images, bboxes, *args, **kwargs):
    return (func(images, *args, **kwargs), bboxes)
  return wrapper


def _parse_policy_info(name: str,
                       prob: float,
                       level: float,
                       replace_value: List[int],
                       cutout_const: float,
                       translate_const: float,
                       level_std: float = 0.) -> Tuple[Any, float, Any]:
  """Return the function that corresponds to `name` and update `level` param."""
  func = NAME_TO_FUNC[name]

  if level_std > 0:
    level += tf.random.normal([], dtype=tf.float32)
    level = tf.clip_by_value(level, 0., _MAX_LEVEL)

  args = level_to_arg(cutout_const, translate_const)[name](level)

  if name in PROB_FUNCS:
    # Add in the prob arg if it is required for the function that is called.
    args = tuple([prob] + list(args))

  if name in REPLACE_FUNCS:
    # Add in replace arg if it is required for the function that is called.
    args = tuple(list(args) + [replace_value])

  # Add bboxes as the second positional argument for the function if it does
  # not already exist.
  if 'bboxes' not in inspect.getfullargspec(func)[0]:
    func = bbox_wrapper(func)

  return func, prob, args


class ImageAugment(object):
  """Image augmentation class for applying image distortions."""

  def distort(
      self,
      image: tf.Tensor
  ) -> tf.Tensor:
    """Given an image tensor, returns a distorted image with the same shape.

    Expect the image tensor values are in the range [0, 255].

    Args:
      image: `Tensor` of shape [height, width, 3] or
        [num_frames, height, width, 3] representing an image or image sequence.

    Returns:
      The augmented version of `image`.
    """
    raise NotImplementedError()

  def distort_with_boxes(
      self,
      image: tf.Tensor,
      bboxes: tf.Tensor
  ) -> Tuple[tf.Tensor, tf.Tensor]:
    """Distorts the image and bounding boxes.

    Expect the image tensor values are in the range [0, 255].

    Args:
      image: `Tensor` of shape [height, width, 3] or
        [num_frames, height, width, 3] representing an image or image sequence.
      bboxes: `Tensor` of shape [num_boxes, 4] or [num_frames, num_boxes, 4]
        representing bounding boxes for an image or image sequence.

    Returns:
      The augmented version of `image` and `bboxes`.
    """
    raise NotImplementedError


class AutoAugment(ImageAugment):
  """Applies the AutoAugment policy to images.

    AutoAugment is from the paper: https://arxiv.org/abs/1805.09501.
  """

  def __init__(self,
               augmentation_name: str = 'v0',
               policies: Optional[Iterable[Iterable[Tuple[str, float,
                                                          float]]]] = None,
               cutout_const: float = 100,
               translate_const: float = 250):
    """Applies the AutoAugment policy to images.

    Args:
      augmentation_name: The name of the AutoAugment policy to use. The
        available options are `v0`, `test`, `reduced_cifar10`, `svhn` and
        `reduced_imagenet`. `v0` is the policy used for all
        of the results in the paper and was found to achieve the best results on
        the COCO dataset. `v1`, `v2` and `v3` are additional good policies found
        on the COCO dataset that have slight variation in what operations were
        used during the search procedure along with how many operations are
        applied in parallel to a single image (2 vs 3). Make sure to set
        `policies` to `None` (the default) if you want to set options using
        `augmentation_name`.
      policies: list of lists of tuples in the form `(func, prob, level)`,
        `func` is a string name of the augmentation function, `prob` is the
        probability of applying the `func` operation, `level` (or magnitude) is
        the input argument for `func`. For example:
        ```
        [[('Equalize', 0.9, 3), ('Color', 0.7, 8)],
         [('Invert', 0.6, 5), ('Rotate', 0.2, 9), ('ShearX', 0.1, 2)], ...]
        ```
        The outer-most list must be 3-d. The number of operations in a
        sub-policy can vary from one sub-policy to another.
        If you provide `policies` as input, any option set with
        `augmentation_name` will get overriden as they are mutually exclusive.
      cutout_const: multiplier for applying cutout.
      translate_const: multiplier for applying translation.

    Raises:
      ValueError if `augmentation_name` is unsupported.
    """
    super(AutoAugment, self).__init__()

    self.augmentation_name = augmentation_name
    self.cutout_const = float(cutout_const)
    self.translate_const = float(translate_const)
    self.available_policies = {
        'detection_v0': self.detection_policy_v0(),
        'v0': self.policy_v0(),
        'test': self.policy_test(),
        'simple': self.policy_simple(),
        'reduced_cifar10': self.policy_reduced_cifar10(),
        'svhn': self.policy_svhn(),
        'reduced_imagenet': self.policy_reduced_imagenet(),
        'panoptic_deeplab_policy': self.panoptic_deeplab_policy(),
        'vit': self.vit(),
        'deit3_three_augment': self.deit3_three_augment(),
    }

    if not policies:
      if augmentation_name not in self.available_policies:
        raise ValueError(
            'Invalid augmentation_name: {}'.format(augmentation_name))

      self.policies = self.available_policies[augmentation_name]

    else:
      self._check_policy_shape(policies)
      self.policies = policies

  def _check_policy_shape(self, policies):
    """Checks dimension and shape of the custom policy.

    Args:
      policies: List of list of tuples in the form `(func, prob, level)`. Must
        have shape of `(:, :, 3)`.

    Raises:
      ValueError if the shape of `policies` is unexpected.
    """
    in_shape = np.array(policies).shape
    if len(in_shape) != 3 or in_shape[-1:] != (3,):
      raise ValueError('Wrong shape detected for custom policy. Expected '
                       '(:, :, 3) but got {}.'.format(in_shape))

  def _make_tf_policies(self):
    """Prepares the TF functions for augmentations based on the policies."""
    replace_value = [128] * 3

    # func is the string name of the augmentation function, prob is the
    # probability of applying the operation and level is the parameter
    # associated with the tf op.

    # tf_policies are functions that take in an image and return an augmented
    # image.
    tf_policies = []
    for policy in self.policies:
      tf_policy = []
      assert_ranges = []
      # Link string name to the correct python function and make sure the
      # correct argument is passed into that function.
      for policy_info in policy:
        _, prob, level = policy_info
        assert_ranges.append(tf.Assert(tf.less_equal(prob, 1.), [prob]))
        assert_ranges.append(
            tf.Assert(tf.less_equal(level, int(_MAX_LEVEL)), [level]))

        policy_info = list(policy_info) + [
            replace_value, self.cutout_const, self.translate_const
        ]
        tf_policy.append(_parse_policy_info(*policy_info))
      # Now build the tf policy that will apply the augmentation procedue
      # on image.
      def make_final_policy(tf_policy_):

        def final_policy(image_, bboxes_):
          for func, prob, args in tf_policy_:
            image_, bboxes_ = _apply_func_with_prob(func, image_, bboxes_, args,
                                                    prob)
          return image_, bboxes_

        return final_policy

      with tf.control_dependencies(assert_ranges):
        tf_policies.append(make_final_policy(tf_policy))

    return tf_policies

  def distort(self, image: tf.Tensor) -> tf.Tensor:
    """See base class."""
    input_image_type = image.dtype
    if input_image_type != tf.uint8:
      image = tf.clip_by_value(image, 0.0, 255.0)
      image = tf.cast(image, dtype=tf.uint8)

    tf_policies = self._make_tf_policies()
    image, _ = select_and_apply_random_policy(tf_policies, image, bboxes=None)
    image = tf.cast(image, dtype=input_image_type)
    return image

  def distort_with_boxes(self, image: tf.Tensor,
                         bboxes: tf.Tensor) -> Tuple[tf.Tensor, tf.Tensor]:
    """See base class."""
    input_image_type = image.dtype
    if input_image_type != tf.uint8:
      image = tf.clip_by_value(image, 0.0, 255.0)
      image = tf.cast(image, dtype=tf.uint8)

    tf_policies = self._make_tf_policies()
    image, bboxes = select_and_apply_random_policy(tf_policies, image, bboxes)
    image = tf.cast(image, dtype=input_image_type)
    assert bboxes is not None
    return image, bboxes

  @staticmethod
  def detection_policy_v0():
    """Autoaugment policy that was used in AutoAugment Paper for Detection.

    https://arxiv.org/pdf/1906.11172

    Each tuple is an augmentation operation of the form
    (operation, probability, magnitude). Each element in policy is a
    sub-policy that will be applied sequentially on the image.

    Returns:
      the policy.
    """
    policy = [
        [('TranslateX_BBox', 0.6, 4), ('Equalize', 0.8, 10)],
        [('TranslateY_Only_BBoxes', 0.2, 2), ('Cutout', 0.8, 8)],
        [('Sharpness', 0.0, 8), ('ShearX_BBox', 0.4, 0)],
        [('ShearY_BBox', 1.0, 2), ('TranslateY_Only_BBoxes', 0.6, 6)],
        [('Rotate_BBox', 0.6, 10), ('Color', 1.0, 6)],
    ]
    return policy

  @staticmethod
  def policy_v0():
    """Autoaugment policy that was used in AutoAugment Paper.

    Each tuple is an augmentation operation of the form
    (operation, probability, magnitude). Each element in policy is a
    sub-policy that will be applied sequentially on the image.

    Returns:
      the policy.
    """

    policy = [
        [('Equalize', 0.8, 1), ('ShearY', 0.8, 4)],
        [('Color', 0.4, 9), ('Equalize', 0.6, 3)],
        [('Color', 0.4, 1), ('Rotate', 0.6, 8)],
        [('Solarize', 0.8, 3), ('Equalize', 0.4, 7)],
        [('Solarize', 0.4, 2), ('Solarize', 0.6, 2)],
        [('Color', 0.2, 0), ('Equalize', 0.8, 8)],
        [('Equalize', 0.4, 8), ('SolarizeAdd', 0.8, 3)],
        [('ShearX', 0.2, 9), ('Rotate', 0.6, 8)],
        [('Color', 0.6, 1), ('Equalize', 1.0, 2)],
        [('Invert', 0.4, 9), ('Rotate', 0.6, 0)],
        [('Equalize', 1.0, 9), ('ShearY', 0.6, 3)],
        [('Color', 0.4, 7), ('Equalize', 0.6, 0)],
        [('Posterize', 0.4, 6), ('AutoContrast', 0.4, 7)],
        [('Solarize', 0.6, 8), ('Color', 0.6, 9)],
        [('Solarize', 0.2, 4), ('Rotate', 0.8, 9)],
        [('Rotate', 1.0, 7), ('TranslateY', 0.8, 9)],
        [('ShearX', 0.0, 0), ('Solarize', 0.8, 4)],
        [('ShearY', 0.8, 0), ('Color', 0.6, 4)],
        [('Color', 1.0, 0), ('Rotate', 0.6, 2)],
        [('Equalize', 0.8, 4), ('Equalize', 0.0, 8)],
        [('Equalize', 1.0, 4), ('AutoContrast', 0.6, 2)],
        [('ShearY', 0.4, 7), ('SolarizeAdd', 0.6, 7)],
        [('Posterize', 0.8, 2), ('Solarize', 0.6, 10)],
        [('Solarize', 0.6, 8), ('Equalize', 0.6, 1)],
        [('Color', 0.8, 6), ('Rotate', 0.4, 5)],
    ]
    return policy

  @staticmethod
  def policy_reduced_cifar10():
    """Autoaugment policy for reduced CIFAR-10 dataset.

    Result is from the AutoAugment paper: https://arxiv.org/abs/1805.09501.

    Each tuple is an augmentation operation of the form
    (operation, probability, magnitude). Each element in policy is a
    sub-policy that will be applied sequentially on the image.

    Returns:
      the policy.
    """
    policy = [
        [('Invert', 0.1, 7), ('Contrast', 0.2, 6)],
        [('Rotate', 0.7, 2), ('TranslateX', 0.3, 9)],
        [('Sharpness', 0.8, 1), ('Sharpness', 0.9, 3)],
        [('ShearY', 0.5, 8), ('TranslateY', 0.7, 9)],
        [('AutoContrast', 0.5, 8), ('Equalize', 0.9, 2)],
        [('ShearY', 0.2, 7), ('Posterize', 0.3, 7)],
        [('Color', 0.4, 3), ('Brightness', 0.6, 7)],
        [('Sharpness', 0.3, 9), ('Brightness', 0.7, 9)],
        [('Equalize', 0.6, 5), ('Equalize', 0.5, 1)],
        [('Contrast', 0.6, 7), ('Sharpness', 0.6, 5)],
        [('Color', 0.7, 7), ('TranslateX', 0.5, 8)],
        [('Equalize', 0.3, 7), ('AutoContrast', 0.4, 8)],
        [('TranslateY', 0.4, 3), ('Sharpness', 0.2, 6)],
        [('Brightness', 0.9, 6), ('Color', 0.2, 8)],
        [('Solarize', 0.5, 2), ('Invert', 0.0, 3)],
        [('Equalize', 0.2, 0), ('AutoContrast', 0.6, 0)],
        [('Equalize', 0.2, 8), ('Equalize', 0.6, 4)],
        [('Color', 0.9, 9), ('Equalize', 0.6, 6)],
        [('AutoContrast', 0.8, 4), ('Solarize', 0.2, 8)],
        [('Brightness', 0.1, 3), ('Color', 0.7, 0)],
        [('Solarize', 0.4, 5), ('AutoContrast', 0.9, 3)],
        [('TranslateY', 0.9, 9), ('TranslateY', 0.7, 9)],
        [('AutoContrast', 0.9, 2), ('Solarize', 0.8, 3)],
        [('Equalize', 0.8, 8), ('Invert', 0.1, 3)],
        [('TranslateY', 0.7, 9), ('AutoContrast', 0.9, 1)],
    ]
    return policy

  @staticmethod
  def policy_svhn():
    """Autoaugment policy for SVHN dataset.

    Result is from the AutoAugment paper: https://arxiv.org/abs/1805.09501.

    Each tuple is an augmentation operation of the form
    (operation, probability, magnitude). Each element in policy is a
    sub-policy that will be applied sequentially on the image.

    Returns:
      the policy.
    """
    policy = [
        [('ShearX', 0.9, 4), ('Invert', 0.2, 3)],
        [('ShearY', 0.9, 8), ('Invert', 0.7, 5)],
        [('Equalize', 0.6, 5), ('Solarize', 0.6, 6)],
        [('Invert', 0.9, 3), ('Equalize', 0.6, 3)],
        [('Equalize', 0.6, 1), ('Rotate', 0.9, 3)],
        [('ShearX', 0.9, 4), ('AutoContrast', 0.8, 3)],
        [('ShearY', 0.9, 8), ('Invert', 0.4, 5)],
        [('ShearY', 0.9, 5), ('Solarize', 0.2, 6)],
        [('Invert', 0.9, 6), ('AutoContrast', 0.8, 1)],
        [('Equalize', 0.6, 3), ('Rotate', 0.9, 3)],
        [('ShearX', 0.9, 4), ('Solarize', 0.3, 3)],
        [('ShearY', 0.8, 8), ('Invert', 0.7, 4)],
        [('Equalize', 0.9, 5), ('TranslateY', 0.6, 6)],
        [('Invert', 0.9, 4), ('Equalize', 0.6, 7)],
        [('Contrast', 0.3, 3), ('Rotate', 0.8, 4)],
        [('Invert', 0.8, 5), ('TranslateY', 0.0, 2)],
        [('ShearY', 0.7, 6), ('Solarize', 0.4, 8)],
        [('Invert', 0.6, 4), ('Rotate', 0.8, 4)],
        [('ShearY', 0.3, 7), ('TranslateX', 0.9, 3)],
        [('ShearX', 0.1, 6), ('Invert', 0.6, 5)],
        [('Solarize', 0.7, 2), ('TranslateY', 0.6, 7)],
        [('ShearY', 0.8, 4), ('Invert', 0.8, 8)],
        [('ShearX', 0.7, 9), ('TranslateY', 0.8, 3)],
        [('ShearY', 0.8, 5), ('AutoContrast', 0.7, 3)],
        [('ShearX', 0.7, 2), ('Invert', 0.1, 5)],
    ]
    return policy

  @staticmethod
  def policy_reduced_imagenet():
    """Autoaugment policy for reduced ImageNet dataset.

    Result is from the AutoAugment paper: https://arxiv.org/abs/1805.09501.

    Each tuple is an augmentation operation of the form
    (operation, probability, magnitude). Each element in policy is a
    sub-policy that will be applied sequentially on the image.

    Returns:
      the policy.
    """
    policy = [
        [('Posterize', 0.4, 8), ('Rotate', 0.6, 9)],
        [('Solarize', 0.6, 5), ('AutoContrast', 0.6, 5)],
        [('Equalize', 0.8, 8), ('Equalize', 0.6, 3)],
        [('Posterize', 0.6, 7), ('Posterize', 0.6, 6)],
        [('Equalize', 0.4, 7), ('Solarize', 0.2, 4)],
        [('Equalize', 0.4, 4), ('Rotate', 0.8, 8)],
        [('Solarize', 0.6, 3), ('Equalize', 0.6, 7)],
        [('Posterize', 0.8, 5), ('Equalize', 1.0, 2)],
        [('Rotate', 0.2, 3), ('Solarize', 0.6, 8)],
        [('Equalize', 0.6, 8), ('Posterize', 0.4, 6)],
        [('Rotate', 0.8, 8), ('Color', 0.4, 0)],
        [('Rotate', 0.4, 9), ('Equalize', 0.6, 2)],
        [('Equalize', 0.0, 7), ('Equalize', 0.8, 8)],
        [('Invert', 0.6, 4), ('Equalize', 1.0, 8)],
        [('Color', 0.6, 4), ('Contrast', 1.0, 8)],
        [('Rotate', 0.8, 8), ('Color', 1.0, 2)],
        [('Color', 0.8, 8), ('Solarize', 0.8, 7)],
        [('Sharpness', 0.4, 7), ('Invert', 0.6, 8)],
        [('ShearX', 0.6, 5), ('Equalize', 1.0, 9)],
        [('Color', 0.4, 0), ('Equalize', 0.6, 3)],
        [('Equalize', 0.4, 7), ('Solarize', 0.2, 4)],
        [('Solarize', 0.6, 5), ('AutoContrast', 0.6, 5)],
        [('Invert', 0.6, 4), ('Equalize', 1.0, 8)],
        [('Color', 0.6, 4), ('Contrast', 1.0, 8)],
        [('Equalize', 0.8, 8), ('Equalize', 0.6, 3)]
    ]
    return policy

  @staticmethod
  def policy_simple():
    """Same as `policy_v0`, except with custom ops removed."""

    policy = [
        [('Color', 0.4, 9), ('Equalize', 0.6, 3)],
        [('Solarize', 0.8, 3), ('Equalize', 0.4, 7)],
        [('Solarize', 0.4, 2), ('Solarize', 0.6, 2)],
        [('Color', 0.2, 0), ('Equalize', 0.8, 8)],
        [('Equalize', 0.4, 8), ('SolarizeAdd', 0.8, 3)],
        [('Color', 0.6, 1), ('Equalize', 1.0, 2)],
        [('Color', 0.4, 7), ('Equalize', 0.6, 0)],
        [('Posterize', 0.4, 6), ('AutoContrast', 0.4, 7)],
        [('Solarize', 0.6, 8), ('Color', 0.6, 9)],
        [('Equalize', 0.8, 4), ('Equalize', 0.0, 8)],
        [('Equalize', 1.0, 4), ('AutoContrast', 0.6, 2)],
        [('Posterize', 0.8, 2), ('Solarize', 0.6, 10)],
        [('Solarize', 0.6, 8), ('Equalize', 0.6, 1)],
    ]
    return policy

  @staticmethod
  def panoptic_deeplab_policy():
    policy = [
        [('Sharpness', 0.4, 1.4), ('Brightness', 0.2, 2.0)],
        [('Equalize', 0.0, 1.8), ('Contrast', 0.2, 2.0)],
        [('Sharpness', 0.2, 1.8), ('Color', 0.2, 1.8)],
        [('Solarize', 0.2, 1.4), ('Equalize', 0.6, 1.8)],
        [('Sharpness', 0.2, 0.2), ('Equalize', 0.2, 1.4)]]
    return policy

  @staticmethod
  def vit():
    """Autoaugment policy for a generic ViT."""
    policy = [
        [('Sharpness', 0.4, 1.4), ('Brightness', 0.2, 2.0), ('Cutout', 0.8, 8)],
        [('Equalize', 0.0, 1.8), ('Contrast', 0.2, 2.0), ('Cutout', 0.8, 8)],
        [('Sharpness', 0.2, 1.8), ('Color', 0.2, 1.8), ('Cutout', 0.8, 8)],
        [('Solarize', 0.2, 1.4), ('Equalize', 0.6, 1.8), ('Cutout', 0.8, 8)],
        [('Sharpness', 0.2, 0.2), ('Equalize', 0.2, 1.4), ('Cutout', 0.8, 8)],
        [('Sharpness', 0.4, 7), ('Invert', 0.6, 8), ('Cutout', 0.8, 8)],
        [('Invert', 0.6, 4), ('Equalize', 1.0, 8), ('Cutout', 0.8, 8)],
        [('Posterize', 0.6, 7), ('Posterize', 0.6, 6), ('Cutout', 0.8, 8)],
        [('Solarize', 0.6, 5), ('AutoContrast', 0.6, 5), ('Cutout', 0.8, 8)],
        ]
    return policy

  @staticmethod
  def deit3_three_augment():
    """Autoaugment policy for three augmentations.

    Proposed in paper: https://arxiv.org/abs/2204.07118.

    Each tuple is an augmentation operation of the form
    (operation, probability, magnitude). Each element in policy is a
    sub-policy that will be applied on the image. Randomly chooses one of the
    three augmentation to apply on image.

    Returns:
      the policy.
    """
    policy = [
        [('Grayscale', 1.0, 0)],
        [('Solarize', 1.0, 5)],  # to have threshold as 128
        [('Gaussian_Noise', 1.0, 1)],  # to have low_std as 0.1
        ]
    return policy

  @staticmethod
  def policy_test():
    """Autoaugment test policy for debugging."""
    policy = [
        [('TranslateX', 1.0, 4), ('Equalize', 1.0, 10)],
    ]
    return policy


def _maybe_identity(x: Optional[tf.Tensor]) -> Optional[tf.Tensor]:
  return tf.identity(x) if x is not None else None


class RandAugment(ImageAugment):
  """Applies the RandAugment policy to images.

  RandAugment is from the paper https://arxiv.org/abs/1909.13719.
  """

  def __init__(self,
               num_layers: int = 2,
               magnitude: float = 10.,
               cutout_const: float = 40.,
               translate_const: float = 100.,
               magnitude_std: float = 0.0,
               prob_to_apply: Optional[float] = None,
               exclude_ops: Optional[List[str]] = None):
    """Applies the RandAugment policy to images.

    Args:
      num_layers: Integer, the number of augmentation transformations to apply
        sequentially to an image. Represented as (N) in the paper. Usually best
        values will be in the range [1, 3].
      magnitude: Integer, shared magnitude across all augmentation operations.
        Represented as (M) in the paper. Usually best values are in the range
        [5, 10].
      cutout_const: multiplier for applying cutout.
      translate_const: multiplier for applying translation.
      magnitude_std: randomness of the severity as proposed by the authors of
        the timm library.
      prob_to_apply: The probability to apply the selected augmentation at each
        layer.
      exclude_ops: exclude selected operations.
    """
    super(RandAugment, self).__init__()

    self.num_layers = num_layers
    self.magnitude = float(magnitude)
    self.cutout_const = float(cutout_const)
    self.translate_const = float(translate_const)
    self.prob_to_apply = (
        float(prob_to_apply) if prob_to_apply is not None else None)
    self.available_ops = [
        'AutoContrast', 'Equalize', 'Invert', 'Rotate', 'Posterize', 'Solarize',
        'Color', 'Contrast', 'Brightness', 'Sharpness', 'ShearX', 'ShearY',
        'TranslateX', 'TranslateY', 'Cutout', 'SolarizeAdd'
    ]
    self.magnitude_std = magnitude_std
    if exclude_ops:
      self.available_ops = [
          op for op in self.available_ops if op not in exclude_ops
      ]

  @classmethod
  def build_for_detection(cls,
                          num_layers: int = 2,
                          magnitude: float = 10.,
                          cutout_const: float = 40.,
                          translate_const: float = 100.,
                          magnitude_std: float = 0.0,
                          prob_to_apply: Optional[float] = None,
                          exclude_ops: Optional[List[str]] = None):
    """Builds a RandAugment that modifies bboxes for geometric transforms."""
    augmenter = cls(
        num_layers=num_layers,
        magnitude=magnitude,
        cutout_const=cutout_const,
        translate_const=translate_const,
        magnitude_std=magnitude_std,
        prob_to_apply=prob_to_apply,
        exclude_ops=exclude_ops)
    box_aware_ops_by_base_name = {
        'Rotate': 'Rotate_BBox',
        'ShearX': 'ShearX_BBox',
        'ShearY': 'ShearY_BBox',
        'TranslateX': 'TranslateX_BBox',
        'TranslateY': 'TranslateY_BBox',
    }
    augmenter.available_ops = [
        box_aware_ops_by_base_name.get(op_name) or op_name
        for op_name in augmenter.available_ops
    ]
    return augmenter

  def _distort_common(
      self,
      image: tf.Tensor,
      bboxes: Optional[tf.Tensor] = None
  ) -> Tuple[tf.Tensor, Optional[tf.Tensor]]:
    """Distorts the image and optionally bounding boxes."""
    input_image_type = image.dtype

    if input_image_type != tf.uint8:
      image = tf.clip_by_value(image, 0.0, 255.0)
      image = tf.cast(image, dtype=tf.uint8)

    replace_value = [128] * 3
    min_prob, max_prob = 0.2, 0.8

    aug_image = image
    aug_bboxes = bboxes

    for _ in range(self.num_layers):
      op_to_select = tf.random.uniform([],
                                       maxval=len(self.available_ops) + 1,
                                       dtype=tf.int32)

      branch_fns = []
      for (i, op_name) in enumerate(self.available_ops):
        prob = tf.random.uniform([],
                                 minval=min_prob,
                                 maxval=max_prob,
                                 dtype=tf.float32)
        func, _, args = _parse_policy_info(op_name, prob, self.magnitude,
                                           replace_value, self.cutout_const,
                                           self.translate_const,
                                           self.magnitude_std)
        branch_fns.append((
            i,
            # pylint:disable=g-long-lambda
            lambda selected_func=func, selected_args=args: selected_func(
                image, bboxes, *selected_args)))
        # pylint:enable=g-long-lambda

      aug_image, aug_bboxes = tf.switch_case(
          branch_index=op_to_select,
          branch_fns=branch_fns,
          default=lambda: (tf.identity(image), _maybe_identity(bboxes)))  # pylint: disable=cell-var-from-loop

      if self.prob_to_apply is not None:
        aug_image, aug_bboxes = tf.cond(
            tf.random.uniform(shape=[], dtype=tf.float32) < self.prob_to_apply,
            lambda: (tf.identity(aug_image), _maybe_identity(aug_bboxes)),
            lambda: (tf.identity(image), _maybe_identity(bboxes)))
      image = aug_image
      bboxes = aug_bboxes

    image = tf.cast(image, dtype=input_image_type)
    return image, bboxes

  def distort(self, image: tf.Tensor) -> tf.Tensor:
    """See base class."""
    image, _ = self._distort_common(image)
    return image

  def distort_with_boxes(self, image: tf.Tensor,
                         bboxes: tf.Tensor) -> Tuple[tf.Tensor, tf.Tensor]:
    """See base class."""
    image, bboxes = self._distort_common(image, bboxes)
    assert bboxes is not None
    return image, bboxes


class RandomErasing(ImageAugment):
  """Applies RandomErasing to a single image.

  Reference: https://arxiv.org/abs/1708.04896

  Implementation is inspired by
  https://github.com/rwightman/pytorch-image-models.
  """

  def __init__(self,
               probability: float = 0.25,
               min_area: float = 0.02,
               max_area: float = 1 / 3,
               min_aspect: float = 0.3,
               max_aspect: Optional[float] = None,
               min_count=1,
               max_count=1,
               trials=10):
    """Applies RandomErasing to a single image.

    Args:
      probability: Probability of augmenting the image. Defaults to `0.25`.
      min_area: Minimum area of the random erasing rectangle. Defaults to
        `0.02`.
      max_area: Maximum area of the random erasing rectangle. Defaults to `1/3`.
      min_aspect: Minimum aspect rate of the random erasing rectangle. Defaults
        to `0.3`.
      max_aspect: Maximum aspect rate of the random erasing rectangle. Defaults
        to `None`.
      min_count: Minimum number of erased rectangles. Defaults to `1`.
      max_count: Maximum number of erased rectangles. Defaults to `1`.
      trials: Maximum number of trials to randomly sample a rectangle that
        fulfills constraint. Defaults to `10`.
    """
    self._probability = probability
    self._min_area = float(min_area)
    self._max_area = float(max_area)
    self._min_log_aspect = math.log(min_aspect)
    self._max_log_aspect = math.log(max_aspect or 1 / min_aspect)
    self._min_count = min_count
    self._max_count = max_count
    self._trials = trials

  def distort(self, image: tf.Tensor) -> tf.Tensor:
    """Applies RandomErasing to single `image`.

    Args:
      image (tf.Tensor): Of shape [height, width, 3] representing an image.

    Returns:
      tf.Tensor: The augmented version of `image`.
    """
    uniform_random = tf.random.uniform(shape=[], minval=0., maxval=1.0)
    mirror_cond = tf.less(uniform_random, self._probability)
    image = tf.cond(mirror_cond, lambda: self._erase(image), lambda: image)
    return image

  @tf.function
  def _erase(self, image: tf.Tensor) -> tf.Tensor:
    """Erase an area."""
    if self._min_count == self._max_count:
      count = self._min_count
    else:
      count = tf.random.uniform(
          shape=[],
          minval=int(self._min_count),
          maxval=int(self._max_count - self._min_count + 1),
          dtype=tf.int32)

    image_height = tf.shape(image)[0]
    image_width = tf.shape(image)[1]
    area = tf.cast(image_width * image_height, tf.float32)

    for _ in range(count):
      # Work around since break is not supported in tf.function
      is_trial_successfull = False
      for _ in range(self._trials):
        if not is_trial_successfull:
          erase_area = tf.random.uniform(
              shape=[],
              minval=area * self._min_area,
              maxval=area * self._max_area)
          aspect_ratio = tf.math.exp(
              tf.random.uniform(
                  shape=[],
                  minval=self._min_log_aspect,
                  maxval=self._max_log_aspect))

          half_height = tf.cast(
              tf.math.round(tf.math.sqrt(erase_area * aspect_ratio) / 2),
              dtype=tf.int32)
          half_width = tf.cast(
              tf.math.round(tf.math.sqrt(erase_area / aspect_ratio) / 2),
              dtype=tf.int32)

          if 2 * half_height < image_height and 2 * half_width < image_width:
            center_height = tf.random.uniform(
                shape=[],
                minval=0,
                maxval=int(image_height - 2 * half_height),
                dtype=tf.int32)
            center_width = tf.random.uniform(
                shape=[],
                minval=0,
                maxval=int(image_width - 2 * half_width),
                dtype=tf.int32)

            image = _fill_rectangle(
                image,
                center_width,
                center_height,
                half_width,
                half_height,
                replace=None)

            is_trial_successfull = True

    return image


class MixupAndCutmix:
  """Applies Mixup and/or Cutmix to a batch of images.

  - Mixup: https://arxiv.org/abs/1710.09412
  - Cutmix: https://arxiv.org/abs/1905.04899

  Implementaion is inspired by https://github.com/rwightman/pytorch-image-models
  """

  def __init__(self,
               num_classes: int,
               mixup_alpha: float = .8,
               cutmix_alpha: float = 1.,
               prob: float = 1.0,
               switch_prob: float = 0.5,
               label_smoothing: float = 0.1):
    """Applies Mixup and/or Cutmix to a batch of images.

    Args:

      num_classes (int): Number of classes.
      mixup_alpha (float, optional): For drawing a random lambda (`lam`) from a
        beta distribution (for each image). If zero Mixup is deactivated.
        Defaults to .8.
      cutmix_alpha (float, optional): For drawing a random lambda (`lam`) from a
        beta distribution (for each image). If zero Cutmix is deactivated.
        Defaults to 1..
      prob (float, optional): Of augmenting the batch. Defaults to 1.0.
      switch_prob (float, optional): Probability of applying Cutmix for the
        batch. Defaults to 0.5.
      label_smoothing (float, optional): Constant for label smoothing. Defaults
        to 0.1.
    """
    self.mixup_alpha = mixup_alpha
    self.cutmix_alpha = cutmix_alpha
    self.mix_prob = prob
    self.switch_prob = switch_prob
    self.label_smoothing = label_smoothing
    self.num_classes = num_classes
    self.mode = 'batch'
    self.mixup_enabled = True

    if self.mixup_alpha and not self.cutmix_alpha:
      self.switch_prob = -1
    elif not self.mixup_alpha and self.cutmix_alpha:
      self.switch_prob = 1

  def __call__(self, images: tf.Tensor,
               labels: tf.Tensor) -> Tuple[tf.Tensor, tf.Tensor]:
    return self.distort(images, labels)

  def distort(self, images: tf.Tensor,
              labels: tf.Tensor) -> Tuple[tf.Tensor, tf.Tensor]:
    """Applies Mixup and/or Cutmix to batch of images and transforms labels.

    Args:
      images (tf.Tensor): Of shape [batch_size, height, width, 3] representing a
        batch of image, or [batch_size, time, height, width, 3] representing a
        batch of video.
      labels (tf.Tensor): Of shape [batch_size, ] representing the class id for
        each image of the batch.

    Returns:
      Tuple[tf.Tensor, tf.Tensor]: The augmented version of `image` and
        `labels`.
    """
    labels = tf.reshape(labels, [-1])
    augment_cond = tf.less(
        tf.random.uniform(shape=[], minval=0., maxval=1.0), self.mix_prob)
    # pylint: disable=g-long-lambda
    augment_a = lambda: self._update_labels(*tf.cond(
        tf.less(
            tf.random.uniform(shape=[], minval=0., maxval=1.0), self.switch_prob
        ), lambda: self._cutmix(images, labels), lambda: self._mixup(
            images, labels)))
    augment_b = lambda: (images, self._smooth_labels(labels))
    # pylint: enable=g-long-lambda

    return tf.cond(augment_cond, augment_a, augment_b)

  @staticmethod
  def _sample_from_beta(alpha, beta, shape):
    sample_alpha = tf.random.gamma(shape, 1., beta=alpha)
    sample_beta = tf.random.gamma(shape, 1., beta=beta)
    return sample_alpha / (sample_alpha + sample_beta)

  def _cutmix(self, images: tf.Tensor,
              labels: tf.Tensor) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor]:
    """Applies cutmix."""
    lam = MixupAndCutmix._sample_from_beta(self.cutmix_alpha, self.cutmix_alpha,
                                           tf.shape(labels))

    ratio = tf.math.sqrt(1 - lam)

    batch_size = tf.shape(images)[0]

    if images.shape.rank == 4:
      image_height, image_width = tf.shape(images)[1], tf.shape(images)[2]
      fill_fn = _fill_rectangle
    elif images.shape.rank == 5:
      image_height, image_width = tf.shape(images)[2], tf.shape(images)[3]
      fill_fn = _fill_rectangle_video
    else:
      raise ValueError('Bad image rank: {}'.format(images.shape.rank))

    cut_height = tf.cast(
        ratio * tf.cast(image_height, dtype=tf.float32), dtype=tf.int32)
    cut_width = tf.cast(
        ratio * tf.cast(image_height, dtype=tf.float32), dtype=tf.int32)

    random_center_height = tf.random.uniform(
        shape=[batch_size], minval=0, maxval=image_height, dtype=tf.int32)
    random_center_width = tf.random.uniform(
        shape=[batch_size], minval=0, maxval=image_width, dtype=tf.int32)

    bbox_area = cut_height * cut_width
    lam = 1. - bbox_area / (image_height * image_width)
    lam = tf.cast(lam, dtype=tf.float32)

    images = tf.map_fn(
        lambda x: fill_fn(*x),
        (images, random_center_width, random_center_height, cut_width // 2,
         cut_height // 2, tf.reverse(images, [0])),
        dtype=(
            images.dtype, tf.int32, tf.int32, tf.int32, tf.int32, images.dtype),
        fn_output_signature=tf.TensorSpec(images.shape[1:], dtype=images.dtype))

    return images, labels, lam

  def _mixup(self, images: tf.Tensor,
             labels: tf.Tensor) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor]:
    """Applies mixup."""
    lam = MixupAndCutmix._sample_from_beta(self.mixup_alpha, self.mixup_alpha,
                                           tf.shape(labels))
    if images.shape.rank == 4:
      lam = tf.reshape(lam, [-1, 1, 1, 1])
    elif images.shape.rank == 5:
      lam = tf.reshape(lam, [-1, 1, 1, 1, 1])
    else:
      raise ValueError('Bad image rank: {}'.format(images.shape.rank))

    lam_cast = tf.cast(lam, dtype=images.dtype)
    images = lam_cast * images + (1. - lam_cast) * tf.reverse(images, [0])

    return images, labels, tf.squeeze(lam)

  def _smooth_labels(self, labels: tf.Tensor) -> tf.Tensor:
    off_value = self.label_smoothing / self.num_classes
    on_value = 1. - self.label_smoothing + off_value

    smooth_labels = tf.one_hot(
        labels, self.num_classes, on_value=on_value, off_value=off_value)
    return smooth_labels

  def _update_labels(self, images: tf.Tensor, labels: tf.Tensor,
                     lam: tf.Tensor) -> Tuple[tf.Tensor, tf.Tensor]:
    labels_1 = self._smooth_labels(labels)
    labels_2 = tf.reverse(labels_1, [0])

    lam = tf.reshape(lam, [-1, 1])
    labels = lam * labels_1 + (1. - lam) * labels_2

    return images, labels