Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -12,41 +12,19 @@ cv_json = os.getenv('CV_JSON')
|
|
12 |
|
13 |
def predict(message, history):
|
14 |
if find(message):
|
15 |
-
# prompt = (
|
16 |
-
# # f"As Jisu(she/her/hers)'s personal assistant,"
|
17 |
-
# # f"Given that: {question_json}, How can I assist with information on: {message}"
|
18 |
-
# )
|
19 |
-
|
20 |
-
# prompt = "As Jisu(she/her/hers)'s personal assistant, Given that: {}, How can I assist with information on: {}".format(question_json, message)
|
21 |
prompt = os.getenv('PREDICT_PROMPT').format(question_json, message)
|
22 |
-
|
23 |
response = llm([HumanMessage(content=prompt)])
|
24 |
-
|
25 |
return response.content
|
26 |
-
|
27 |
-
# prompt = (
|
28 |
-
# # os.getenv('PREDICT_PROMPT1')
|
29 |
-
# f"As Jisu(she/her/hers)'s personal assistant,"
|
30 |
-
# f"Given that: {cv_json}, How can I assist with information on: {message}"
|
31 |
-
# f"If source does not contains relevant information, I will state that the information is not available."
|
32 |
-
# )
|
33 |
|
34 |
-
# prompt = "As Jisu(she/her/hers)'s personal assistant, Given that: {}, How can I assist with information on: {}. If the source does not contain relevant information, I will state that the information is not available.".format(cv_json, message)
|
35 |
prompt = os.getenv('PREDICT_PROMPT1').format(cv_json, message)
|
36 |
|
37 |
response = llm([HumanMessage(content=prompt)])
|
38 |
return response.content
|
39 |
|
40 |
def find(message):
|
41 |
-
prompt = (
|
42 |
-
"Given the list of questions about Jisu's CV: \n"
|
43 |
-
"- What are Jisu's current projects?\n"
|
44 |
-
"- What are Jisu's publications?\n"
|
45 |
-
"- How can I reach out to Jisu?\n"
|
46 |
-
f"Determine if the following query matches any of the topics above: '{message}'. Answer 'Yes' if it matches, otherwise answer 'No'."
|
47 |
-
)
|
48 |
-
|
49 |
response = llm([HumanMessage(content=prompt)])
|
|
|
50 |
if response.content.strip() == 'Yes':
|
51 |
return True
|
52 |
else:
|
@@ -57,7 +35,6 @@ examples = [
|
|
57 |
"What are Jisu's current projects?",
|
58 |
"What are Jisu's publications?",
|
59 |
"How can I reach out to Jisu?",
|
60 |
-
# "How is the answer generated?"
|
61 |
]
|
62 |
|
63 |
with gr.Blocks(theme='gradio/soft', fill_height=True) as demo:
|
|
|
12 |
|
13 |
def predict(message, history):
|
14 |
if find(message):
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
prompt = os.getenv('PREDICT_PROMPT').format(question_json, message)
|
|
|
16 |
response = llm([HumanMessage(content=prompt)])
|
|
|
17 |
return response.content
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
|
|
19 |
prompt = os.getenv('PREDICT_PROMPT1').format(cv_json, message)
|
20 |
|
21 |
response = llm([HumanMessage(content=prompt)])
|
22 |
return response.content
|
23 |
|
24 |
def find(message):
|
25 |
+
prompt = os.getenv('FIND_PROMPT').format(message)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
response = llm([HumanMessage(content=prompt)])
|
27 |
+
|
28 |
if response.content.strip() == 'Yes':
|
29 |
return True
|
30 |
else:
|
|
|
35 |
"What are Jisu's current projects?",
|
36 |
"What are Jisu's publications?",
|
37 |
"How can I reach out to Jisu?",
|
|
|
38 |
]
|
39 |
|
40 |
with gr.Blocks(theme='gradio/soft', fill_height=True) as demo:
|