import numpy as np
import cv2
import torch


# Dictionary utils
def _dict_merge(dicta, dictb, prefix=''):
    """
    Merge two dictionaries.
    """
    assert isinstance(dicta, dict), 'input must be a dictionary'
    assert isinstance(dictb, dict), 'input must be a dictionary'
    dict_ = {}
    all_keys = set(dicta.keys()).union(set(dictb.keys()))
    for key in all_keys:
        if key in dicta.keys() and key in dictb.keys():
            if isinstance(dicta[key], dict) and isinstance(dictb[key], dict):
                dict_[key] = _dict_merge(dicta[key], dictb[key], prefix=f'{prefix}.{key}')
            else:
                raise ValueError(f'Duplicate key {prefix}.{key} found in both dictionaries. Types: {type(dicta[key])}, {type(dictb[key])}')
        elif key in dicta.keys():
            dict_[key] = dicta[key]
        else:
            dict_[key] = dictb[key]
    return dict_


def dict_merge(dicta, dictb):
    """
    Merge two dictionaries.
    """
    return _dict_merge(dicta, dictb, prefix='')


def dict_foreach(dic, func, special_func={}):
    """
    Recursively apply a function to all non-dictionary leaf values in a dictionary.
    """
    assert isinstance(dic, dict), 'input must be a dictionary'
    for key in dic.keys():
        if isinstance(dic[key], dict):
            dic[key] = dict_foreach(dic[key], func)
        else:
            if key in special_func.keys():
                dic[key] = special_func[key](dic[key])
            else:
                dic[key] = func(dic[key])
    return dic


def dict_reduce(dicts, func, special_func={}):
    """
    Reduce a list of dictionaries. Leaf values must be scalars.
    """
    assert isinstance(dicts, list), 'input must be a list of dictionaries'
    assert all([isinstance(d, dict) for d in dicts]), 'input must be a list of dictionaries'
    assert len(dicts) > 0, 'input must be a non-empty list of dictionaries'
    all_keys = set([key for dict_ in dicts for key in dict_.keys()])
    reduced_dict = {}
    for key in all_keys:
        vlist = [dict_[key] for dict_ in dicts if key in dict_.keys()]
        if isinstance(vlist[0], dict):
            reduced_dict[key] = dict_reduce(vlist, func, special_func)
        else:
            if key in special_func.keys():
                reduced_dict[key] = special_func[key](vlist)
            else:
                reduced_dict[key] = func(vlist)
    return reduced_dict


def dict_any(dic, func):
    """
    Recursively apply a function to all non-dictionary leaf values in a dictionary.
    """
    assert isinstance(dic, dict), 'input must be a dictionary'
    for key in dic.keys():
        if isinstance(dic[key], dict):
            if dict_any(dic[key], func):
                return True
        else:
            if func(dic[key]):
                return True
    return False


def dict_all(dic, func):
    """
    Recursively apply a function to all non-dictionary leaf values in a dictionary.
    """
    assert isinstance(dic, dict), 'input must be a dictionary'
    for key in dic.keys():
        if isinstance(dic[key], dict):
            if not dict_all(dic[key], func):
                return False
        else:
            if not func(dic[key]):
                return False
    return True


def dict_flatten(dic, sep='.'):
    """
    Flatten a nested dictionary into a dictionary with no nested dictionaries.
    """
    assert isinstance(dic, dict), 'input must be a dictionary'
    flat_dict = {}
    for key in dic.keys():
        if isinstance(dic[key], dict):
            sub_dict = dict_flatten(dic[key], sep=sep)
            for sub_key in sub_dict.keys():
                flat_dict[str(key) + sep + str(sub_key)] = sub_dict[sub_key]
        else:
            flat_dict[key] = dic[key]
    return flat_dict


def make_grid(images, nrow=None, ncol=None, aspect_ratio=None):
    num_images = len(images)
    if nrow is None and ncol is None:
        if aspect_ratio is not None:
            nrow = int(np.round(np.sqrt(num_images / aspect_ratio)))
        else:
            nrow = int(np.sqrt(num_images))
        ncol = (num_images + nrow - 1) // nrow
    elif nrow is None and ncol is not None:
        nrow = (num_images + ncol - 1) // ncol
    elif nrow is not None and ncol is None:
        ncol = (num_images + nrow - 1) // nrow
    else:
        assert nrow * ncol >= num_images, 'nrow * ncol must be greater than or equal to the number of images'
        
    grid = np.zeros((nrow * images[0].shape[0], ncol * images[0].shape[1], images[0].shape[2]), dtype=images[0].dtype)
    for i, img in enumerate(images):
        row = i // ncol
        col = i % ncol
        grid[row * img.shape[0]:(row + 1) * img.shape[0], col * img.shape[1]:(col + 1) * img.shape[1]] = img
    return grid


def notes_on_image(img, notes=None):
    img = np.pad(img, ((0, 32), (0, 0), (0, 0)), 'constant', constant_values=0)
    img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
    if notes is not None:
        img = cv2.putText(img, notes, (0, img.shape[0] - 4), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 1)
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    return img


def save_image_with_notes(img, path, notes=None):
    """
    Save an image with notes.
    """
    if isinstance(img, torch.Tensor):
        img = img.cpu().numpy().transpose(1, 2, 0)
    if img.dtype == np.float32 or img.dtype == np.float64:
        img = np.clip(img * 255, 0, 255).astype(np.uint8)
    img = notes_on_image(img, notes)
    cv2.imwrite(path, cv2.cvtColor(img, cv2.COLOR_RGB2BGR))


# debug utils

def atol(x, y):
    """
    Absolute tolerance.
    """
    return torch.abs(x - y)


def rtol(x, y):
    """
    Relative tolerance.
    """
    return torch.abs(x - y) / torch.clamp_min(torch.maximum(torch.abs(x), torch.abs(y)), 1e-12)


# print utils
def indent(s, n=4):
    """
    Indent a string.
    """
    lines = s.split('\n')
    for i in range(1, len(lines)):
        lines[i] = ' ' * n + lines[i]
    return '\n'.join(lines)