File size: 5,992 Bytes
3ca8ae1
 
 
 
 
 
7d0ab8e
3ca8ae1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import os

import gradio as gr

from .inference import run_model
from .utils import load_pred_volume_to_numpy
from .utils import load_to_numpy
from .utils import nifti_to_glb


class WebUI:
    def __init__(
        self,
        model_name: str = None,
        cwd: str = "/home/user/app/",
        share: int = 1,
    ):
        # global states
        self.images = []
        self.pred_images = []

        # @TODO: This should be dynamically set based on chosen volume size
        self.nb_slider_items = 512

        self.model_name = model_name
        self.cwd = cwd
        self.share = share

        self.class_name = "meningioma"  # default
        self.class_names = {
            "meningioma": "MRI_Meningioma",
            "lower-grade-glioma": "MRI_LGGlioma",
            "metastasis": "MRI_Metastasis",
            "glioblastoma": "MRI_GBM",
            "brain": "MRI_Brain",
        }

        self.result_names = {
            "meningioma": "Tumor",
            "lower-grade-glioma": "Tumor",
            "metastasis": "Tumor",
            "glioblastoma": "Tumor",
            "brain": "Brain",
        }

        # define widgets not to be rendered immediately, but later on
        self.slider = gr.Slider(
            minimum=1,
            maximum=self.nb_slider_items,
            value=1,
            step=1,
            label="Which 2D slice to show",
            interactive=True,
        )

        self.volume_renderer = gr.Model3D(
            clear_color=[0.0, 0.0, 0.0, 0.0],
            label="3D Model",
            visible=True,
            elem_id="model-3d",
        ).style(height=512)

    def set_class_name(self, value):
        print("Changed task to:", value)
        self.class_name = value

    def combine_ct_and_seg(self, img, pred):
        return (img, [(pred, self.class_name)])

    def upload_file(self, file):
        return file.name

    def process(self, mesh_file_name):
        path = mesh_file_name.name
        run_model(
            path,
            model_path=os.path.join(self.cwd, "resources/models/"),
            task=self.class_names[self.class_name],
            name=self.result_names[self.class_name],
        )
        nifti_to_glb("prediction.nii.gz")

        self.images = load_to_numpy(path)
        # @TODO. Dynamic update of the slider does not seem to work like this
        # self.nb_slider_items = len(self.images)
        # self.slider.update(value=int(self.nb_slider_items/2), maximum=self.nb_slider_items)

        self.pred_images = load_pred_volume_to_numpy("./prediction.nii.gz")
        return "./prediction.obj"

    def get_img_pred_pair(self, k):
        k = int(k) - 1
        # @TODO. Will the duplicate the last slice to fill up, since slider not adjustable right now
        if k >= len(self.images):
            k = len(self.images) - 1
        out = [gr.AnnotatedImage.update(visible=False)] * self.nb_slider_items
        out[k] = gr.AnnotatedImage.update(
            self.combine_ct_and_seg(self.images[k], self.pred_images[k]),
            visible=True,
        )
        return out

    def run(self):
        css = """
        #model-3d {
        height: 512px;
        }
        #model-2d {
        height: 512px;
        margin: auto;
        }
        #upload {
        height: 120px;
        }
        """
        with gr.Blocks(css=css) as demo:
            with gr.Row():
                file_output = gr.File(file_count="single", elem_id="upload")
                file_output.upload(self.upload_file, file_output, file_output)

                model_selector = gr.Dropdown(
                    list(self.class_names.keys()),
                    label="Segmentation task",
                    info="Select the preoperative segmentation model to run",
                    multiselect=False,
                    size="sm",
                )
                model_selector.input(
                    fn=lambda x: self.set_class_name(x),
                    inputs=model_selector,
                    outputs=None,
                )

                run_btn = gr.Button("Run segmentation").style(
                    full_width=False, size="lg"
                )
                run_btn.click(
                    fn=lambda x: self.process(x),
                    inputs=file_output,
                    outputs=self.volume_renderer,
                )

            with gr.Row():
                gr.Examples(
                    examples=[
                        os.path.join(self.cwd, "t1gd.nii.gz"),
                    ],
                    inputs=file_output,
                    outputs=file_output,
                    fn=self.upload_file,
                    cache_examples=True,
                )

            with gr.Row():
                with gr.Box():
                    with gr.Column():
                        image_boxes = []
                        for i in range(self.nb_slider_items):
                            visibility = True if i == 1 else False
                            t = gr.AnnotatedImage(
                                visible=visibility, elem_id="model-2d"
                            ).style(
                                color_map={self.class_name: "#ffae00"},
                                height=512,
                                width=512,
                            )
                            image_boxes.append(t)

                        self.slider.input(
                            self.get_img_pred_pair, self.slider, image_boxes
                        )

                        self.slider.render()

                with gr.Box():
                    self.volume_renderer.render()

        # sharing app publicly -> share=True:
        # https://gradio.app/sharing-your-app/
        # inference times > 60 seconds -> need queue():
        # https://github.com/tloen/alpaca-lora/issues/60#issuecomment-1510006062
        demo.queue().launch(
            server_name="0.0.0.0", server_port=7860, share=self.share
        )