File size: 16,927 Bytes
29cd263
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
# gradio final ver ----------------------------

import numpy as np
import pandas as pd
import requests
from PIL import Image
import torch
from transformers import AutoProcessor, AutoModelForZeroShotImageClassification, pipeline
import gradio as gr
import openai
from sklearn.metrics.pairwise import cosine_similarity
import ast



###### ๊ธฐ๋ณธ ์„ค์ • ######
# OpenAI API ํ‚ค ์„ค์ •
openai.api_key = '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'

# ๋ชจ๋ธ ๋ฐ ํ”„๋กœ์„ธ์„œ ๋กœ๋“œ
processor = AutoProcessor.from_pretrained("openai/clip-vit-large-patch14")
model_clip = AutoModelForZeroShotImageClassification.from_pretrained("openai/clip-vit-large-patch14")
tokenizer = KoBERTTokenizer.from_pretrained('skt/kobert-base-v1')

# ์˜ˆ์ธก ๋ ˆ์ด๋ธ”
labels = ['a photo of a happy face', 'a photo of a joyful face', 'a photo of a loving face',
          'a photo of an angry face', 'a photo of a melancholic face', 'a photo of a lonely face']

###### ์–ผ๊ตด ๊ฐ์ • ๋ฒกํ„ฐ ์˜ˆ์ธก ํ•จ์ˆ˜ ######
def predict_face_emotion(image):
    # ์ด๋ฏธ์ง€๊ฐ€ None์ด๊ฑฐ๋‚˜ ์ž˜๋ชป๋œ ๊ฒฝ์šฐ
    if image is None:
        return np.zeros(len(labels))  # ๋นˆ ๋ฒกํ„ฐ ๋ฐ˜ํ™˜

    # PIL ์ด๋ฏธ์ง€๋ฅผ RGB๋กœ ๋ณ€ํ™˜
    image = image.convert("RGB")

    # CLIP ๋ชจ๋ธ์˜ processor๋ฅผ ์ด์šฉํ•œ ์ „์ฒ˜๋ฆฌ
    inputs = processor(text=labels, images=image, return_tensors="pt", padding=True)

    # pixel_values๊ฐ€ 4์ฐจ์›์ธ์ง€ ํ™•์ธ ํ›„ ๊ฐ•์ œ ๋ณ€ํ™˜
    pixel_values = inputs["pixel_values"]  # (batch_size, channels, height, width)

    # CLIP ๋ชจ๋ธ ์˜ˆ์ธก: forward์— ์˜ฌ๋ฐ”๋ฅธ ์ž…๋ ฅ ์ „๋‹ฌ
    with torch.no_grad():
        outputs = model_clip(pixel_values=pixel_values, input_ids=inputs["input_ids"])

    # ํ™•๋ฅ ๊ฐ’ ๊ณ„์‚ฐ
    probs = outputs.logits_per_image.softmax(dim=1)[0]
    return probs.numpy()

###### ํ…์ŠคํŠธ ๊ฐ์ • ๋ฒกํ„ฐ ์˜ˆ์ธก ํ•จ์ˆ˜ ######
sentence_emotions = []

def predict_text_emotion(predict_sentence):

    if not isinstance(predict_sentence, str):
        predict_sentence = str(predict_sentence)

    data = [predict_sentence, '0']
    dataset_another = [data]

    another_test = BERTDataset(dataset_another, 0, 1, tokenizer, vocab, max_len, True, False)
    test_dataloader = torch.utils.data.DataLoader(another_test, batch_size=1, num_workers=5)

    model.eval()

    for batch_id, (token_ids, valid_length, segment_ids, label) in enumerate(test_dataloader):
        token_ids = token_ids.long().to(device)
        segment_ids = segment_ids.long().to(device)

        out = model(token_ids, valid_length, segment_ids)
        for i in out:
            logits = i.detach().cpu().numpy()
            emotions = [value.item() for value in i]
            sentence_emotions.append(emotions)
    return sentence_emotions[0]  # ์ตœ์ข… ๋ฆฌ์ŠคํŠธ ๋ฐ˜ํ™˜

###### ์ตœ์ข… ๊ฐ์ • ๋ฒกํ„ฐ ๊ณ„์‚ฐ ######
def generate_final_emotion_vector(diary_input, image_input):
    # ํ…์ŠคํŠธ ๊ฐ์ • ๋ฒกํ„ฐ ์˜ˆ์ธก
    text_vector = predict_text_emotion(diary_input)
    # ์–ผ๊ตด ๊ฐ์ • ๋ฒกํ„ฐ ์˜ˆ์ธก
    image_vector = predict_face_emotion(image_input)
    text_vector = np.array(text_vector, dtype=float)
    image_vector = np.array(image_vector, dtype=float)

    print(text_vector)
    print(image_vector)

    # ์ตœ์ข… ๊ฐ์ • ๋ฒกํ„ฐ ๊ฐ€์ค‘์น˜ ์ ์šฉ
    return (text_vector * 0.7) + (image_vector * 0.3)

####### ์ฝ”์‚ฌ์ธ ์œ ์‚ฌ๋„ ํ•จ์ˆ˜ ######
def cosine_similarity_fn(vec1, vec2):
    dot_product = np.dot(vec1, vec2)
    norm_vec1 = np.linalg.norm(vec1)
    norm_vec2 = np.linalg.norm(vec2)
    if norm_vec1 == 0 or norm_vec2 == 0:
        return np.nan  # ์ œ๋กœ ๋ฒกํ„ฐ์ธ ๊ฒฝ์šฐ NaN ๋ฐ˜ํ™˜
    return dot_product / (norm_vec1 * norm_vec2)


####### ์ด๋ฏธ์ง€ ๋‹ค์šด๋กœ๋“œ ํ•จ์ˆ˜ (PIL ๊ฐ์ฒด ๋ฐ˜ํ™˜) ######
def download_image(image_url):
    try:
        response = requests.get(image_url)
        response.raise_for_status()
        return Image.open(requests.get(image_url, stream=True).raw)
    except Exception as e:
        print(f"์ด๋ฏธ์ง€ ๋‹ค์šด๋กœ๋“œ ์˜ค๋ฅ˜: {e}")
        return None

# ์Šคํƒ€์ผ ์˜ต์…˜
options = {
    1: "๐ŸŒผ ์นœ๊ทผํ•œ",
    2: "๐Ÿ”ฅ ํŠธ๋ Œ๋””ํ•œ MZ์„ธ๋Œ€",
    3: "๐Ÿ˜„ ์œ ๋จธ๋Ÿฌ์Šคํ•œ ์žฅ๋‚œ๊พธ๋Ÿฌ๊ธฐ",
    4: "๐Ÿง˜ ์ฐจ๋ถ„ํ•œ ๋ช…์ƒ๊ฐ€",
    5: "๐ŸŽจ ์ฐฝ์˜์ ์ธ ์˜ˆ์ˆ ๊ฐ€",
}

# ์ผ๊ธฐ ๋ถ„์„ ํ•จ์ˆ˜
def chatbot_diary_with_image(style_option, diary_input, image_input, playlist_input):

    style = options.get(int(style_option.split('.')[0]), "๐ŸŒผ ์นœ๊ทผํ•œ")

    # GPT ์‘๋‹ต (์ผ๊ธฐ ์ฝ”๋ฉ˜ํŠธ)
    try:
        response_comment = openai.ChatCompletion.create(
            model="gpt-4-turbo",
            messages=[{"role": "system", "content": f"๋„ˆ๋Š” {style} ์ฑ—๋ด‡์ด์•ผ."}, {"role": "user", "content": diary_input}],
        )
        comment = response_comment.choices[0].message.content
    except Exception as e:
        comment = f"๐Ÿ’ฌ ์˜ค๋ฅ˜: {e}"

    # GPT ๊ธฐ๋ฐ˜ ์ผ๊ธฐ ์ฃผ์ œ ์ถ”์ฒœ
    try:
        topics = get_initial_response(style_option, diary_input)
    except Exception as e:
        topics = f"๐Ÿ“ ์ฃผ์ œ ์ถ”์ฒœ ์˜ค๋ฅ˜: {e}"

    # DALLยทE 3 ์ด๋ฏธ์ง€ ์ƒ์„ฑ ์š”์ฒญ (3D ์Šคํƒ€์ผ ์บ๋ฆญํ„ฐ)
    try:
        response = openai.Image.create(
            model="dall-e-3",
            prompt=(
                  f"{diary_input}๋ฅผ ๋ฐ˜์˜ํ•ด์„œ ๊ฐ์ •์„ ํ‘œํ˜„ํ•˜๋Š” 3D ์Šคํƒ€์ผ์˜ ์ผ๋Ÿฌ์ŠคํŠธ ์บ๋ฆญํ„ฐ๋ฅผ ๊ทธ๋ ค์ค˜. "
                  "์บ๋ฆญํ„ฐ๋Š” ๋ถ€๋“œ๋Ÿฝ๊ณ  ๋‘ฅ๊ทผ ๋””์ž์ธ์— ํ‘œ์ •์ด ๊ฐ์ •์„ ์ž˜ ๋“œ๋Ÿฌ๋‚ด์•ผ ํ•ด. "
                  "๊ฐ์ •์„ ์‹œ๊ฐ์ ์œผ๋กœ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋Š” ์†Œํ’ˆ์ด๋‚˜ ์ž‘์€ ์ƒ์ง•์„ ํฌํ•จํ•ด์ค˜. "
                  "๊ฐ์ •์˜ ๋ถ„์œ„๊ธฐ๋ฅผ ๋ฐ˜์˜ํ•˜๋Š” ์„ ๋ช…ํ•˜๊ณ  ๊นจ๋—ํ•œ ์ƒ‰์ƒ์„ ์‚ฌ์šฉํ•˜๊ณ , ์บ๋ฆญํ„ฐ๊ฐ€ ์—ญ๋™์ ์ด๊ณ  ์žฌ๋ฏธ์žˆ๋Š” ์ž์„ธ๋ฅผ ์ทจํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•ด์ค˜. "
                  "์ด๋ฏธ์ง€์—๋Š” ํ•˜๋‚˜์˜ ์บ๋ฆญํ„ฐ๋งŒ ๋‚˜์˜ค๊ฒŒ ํ•ด์ค˜."
                  "๋ฐฐ๊ฒฝ์€ ๋‹จ์ˆœํ•˜๊ณ  ๋ฐ์€ ์ƒ‰์ƒ์œผ๋กœ ์„ค์ •ํ•ด์„œ ์บ๋ฆญํ„ฐ๊ฐ€ ๊ฐ•์กฐ๋  ์ˆ˜ ์žˆ๋„๋ก ํ•ด์ค˜."
            ),
            size="1024x1024",
            n=1
        )
        # URL ๊ฐ€์ ธ์˜ค๊ธฐ ๋ฐ ๋‹ค์šด๋กœ๋“œ
        image_url = response['data'][0]['url']
        print(f"Generated Image URL: {image_url}")  # URL ํ™•์ธ
        image = download_image(image_url)
    except Exception as e:
        print(f"์ด๋ฏธ์ง€ ์ƒ์„ฑ ์˜ค๋ฅ˜: {e}")  # ์˜ค๋ฅ˜ ์ƒ์„ธ ์ถœ๋ ฅ
        image = None

    # ์‚ฌ์šฉ์ž ์ตœ์ข… ๊ฐ์ • ๋ฒกํ„ฐ
    final_user_emotions = generate_final_emotion_vector(diary_input,image_input)

    # ๊ฐ ๋…ธ๋ž˜์— ๋Œ€ํ•œ ์ฝ”์‚ฌ์ธ ์œ ์‚ฌ๋„ ๊ณ„์‚ฐ
    similarities = [cosine_similarity_fn(final_user_emotions, song_vec) for song_vec in emotions]

    #์œ ํšจํ•œ ์œ ์‚ฌ๋„ ํ•„ํ„ฐ๋ง
    valid_indices = [i for i, sim in enumerate(similarities) if not np.isnan(sim)]
    filtered_similarities = [similarities[i] for i in valid_indices]

    recommendations = np.argsort(filtered_similarities)[::-1]  # ๋†’์€ ์œ ์‚ฌ๋„ ์ˆœ์œผ๋กœ ์ •๋ ฌ
    results_df = pd.DataFrame({
    'Singer' : melon_emotions['singer'].iloc[recommendations].values,
    'title' : melon_emotions['Title'].iloc[recommendations].values,
    'genre' : melon_emotions['genre'].iloc[recommendations].values,
    'Cosine Similarity': [similarities[idx] for idx in recommendations]
    })

    # ๊ฐ€์ค‘์น˜ ๊ฐ’ ์„ค์ •
    gamma = 0.3

    similar_playlists = results_df.head(5)
    similar_playlists = pd.merge(similar_playlists, melon_emotions, left_on="title", right_on="Title", how="inner")
    similar_playlists = similar_playlists[["title", "Emotions", "singer"]]

    dissimilar_playlists = results_df.tail(5)
    dissimilar_playlists = pd.merge(dissimilar_playlists, melon_emotions, left_on="title", right_on="Title", how="inner")
    dissimilar_playlists = dissimilar_playlists[["title", "Emotions", "singer"]]

    #๊ฐ์ •๊ณผ ์œ ์‚ฌํ•œ ํ”Œ๋ ˆ์ด๋ฆฌ์ŠคํŠธ
    if playlist_input == '๋น„์Šทํ•œ':
      results = []
      seen_songs = set(similar_playlists["title"].values)  # ์ดˆ๊ธฐ seen_songs์— similar_playlists์˜ ๊ณก๋“ค์„ ์ถ”๊ฐ€

      # ์‚ฌ์šฉ์ž ๊ฐ์ • ๋ฒกํ„ฐ
      user_emotion_vector = generate_final_emotion_vector(diary_input, image_input).reshape(1, -1)

      for index, row in similar_playlists.iterrows():
          song_title = row["title"]
          song_singer = row["singer"]
          song_vector = np.array(row["Emotions"]).reshape(1, -1)

          song_results = []
          for i, emotion_vec in enumerate(emotions):
              emotion_title = melon_emotions.iloc[i]["Title"]
              emotion_singer = melon_emotions.iloc[i]["singer"]
              emotion_vec = np.array(emotion_vec).reshape(1, -1)

              # similar_playlists์— ์žˆ๋Š” ๊ณก๊ณผ seen_songs์— ์žˆ๋Š” ๊ณก์€ ์ œ์™ธ
              if (
                  emotion_title != song_title and
                  emotion_title not in seen_songs
              ):
                  try:
                      # ๊ณก ๊ฐ„ ์œ ์‚ฌ๋„(Song-Song Similarity)
                      song_song_similarity = cosine_similarity(song_vector, emotion_vec)[0][0]

                      # ์‚ฌ์šฉ์ž ๊ฐ์ • ๋ฒกํ„ฐ์™€์˜ ์œ ์‚ฌ๋„(User-Song Similarity)
                      user_song_similarity = cosine_similarity(user_emotion_vector, emotion_vec)[0][0]

                      # Final Score ๊ณ„์‚ฐ
                      final_score = gamma * song_song_similarity + (1 - gamma) * user_song_similarity

                      song_results.append({
                          "Title": emotion_title,
                          "Singer": emotion_singer,
                          "Song-Song Similarity": song_song_similarity,
                          "User-Song Similarity": user_song_similarity,
                          "Final Score": final_score
                      })
                  except ValueError as e:
                      print(f"Error with {song_title} vs {emotion_title}: {e}")
                      continue

          # Final Score๋ฅผ ๊ธฐ์ค€์œผ๋กœ ์ƒ์œ„ 3๊ณก ์„ ํƒ
          song_results = sorted(song_results, key=lambda x: x["Final Score"], reverse=True)[:3]
          seen_songs.update([entry["Title"] for entry in song_results])

          results.append({"Song Title": song_title, "Singer": song_singer, "Top 3 Similarities": song_results})

      # ๊ฒฐ๊ณผ ์ถœ๋ ฅ
      for result in results:
          print(f"{result['Singer']} - {result['Song Title']}")
          for entry in result["Top 3 Similarities"]:
              print(f"{entry['Singer']} - {entry['Title']} : Final Score {entry['Final Score']:.4f}")
              print(f"  (Song-Song Similarity: {entry['Song-Song Similarity']:.4f}, User-Song Similarity: {entry['User-Song Similarity']:.4f})")
          print("-" * 30)

    #๋ฐ˜๋Œ€ ํ”Œ๋ ˆ์ด๋ฆฌ์ŠคํŠธ
    if playlist_input == '์ƒ๋ฐ˜๋œ':
      results = []
      seen_songs = set()

      # ์‚ฌ์šฉ์ž ๊ฐ์ • ๋ฒกํ„ฐ
      user_emotion_vector = generate_final_emotion_vector(diary_input, image_input).reshape(1, -1)

      for index, row in dissimilar_playlists.iterrows():
          song_title = row["title"]
          song_singer = row["singer"]
          song_vector = np.array(row["Emotions"]).reshape(1, -1)

          song_results = []
          for i, emotion_vec in enumerate(emotions):
              emotion_title = melon_emotions.iloc[i]["Title"]
              emotion_singer = melon_emotions.iloc[i]["singer"]
              emotion_vec = np.array(emotion_vec).reshape(1, -1)

              if (
                  emotion_title != song_title and
                  emotion_title not in dissimilar_playlists["title"].values and
                  emotion_title not in seen_songs
              ):
                  try:
                      # ๊ณก ๊ฐ„ ์œ ์‚ฌ๋„(Song-Song Similarity)
                      song_song_similarity = cosine_similarity(song_vector, emotion_vec)[0][0]

                      # ์‚ฌ์šฉ์ž ๊ฐ์ • ๋ฒกํ„ฐ์™€์˜ ๋ฐ˜๋Œ€ ์œ ์‚ฌ๋„(User-Song Dissimilarity)
                      opposite_user_song_similarity = 1 - cosine_similarity(user_emotion_vector, emotion_vec)[0][0]

                      # Final Score ๊ณ„์‚ฐ
                      final_score = gamma * song_song_similarity + (1 - gamma) * opposite_user_song_similarity

                      song_results.append({
                          "Title": emotion_title,
                          "Singer": emotion_singer,
                          "Song-Song Similarity": song_song_similarity,
                          "User-Song Dissimilarity": opposite_user_song_similarity,
                          "Final Score": final_score
                      })
                  except ValueError as e:
                      print(f"Error with {song_title} vs {emotion_title}: {e}")
                      continue

          # Final Score๋ฅผ ๊ธฐ์ค€์œผ๋กœ ์ƒ์œ„ 3๊ณก ์„ ํƒ (๊ฐ’์ด ํฐ ๊ณก์ด ๋ฐ˜๋Œ€๋˜๋Š” ๊ณก)
          song_results = sorted(song_results, key=lambda x: x["Final Score"], reverse=True)[:3]
          seen_songs.update(entry["Title"] for entry in song_results)

          results.append({"Song Title": song_title, "Singer": song_singer, "Top 3 Similarities": song_results})

      # ๊ฒฐ๊ณผ ์ถœ๋ ฅ
      for result in results:
          print(f"{result['Singer']} - {result['Song Title']}")
          for entry in result["Top 3 Similarities"]:
              print(f"{entry['Singer']} - {entry['Title']} : Final Score {entry['Final Score']:.4f}")
              print(f'  (Song-Song Similarity: {entry["Song-Song Similarity"]:.4f}, User-Song Dissimilarity: {entry["User-Song Dissimilarity"]:.4f})')
          print("-" * 30)
    # ๋ฐ์ดํ„ฐํ”„๋ ˆ์ž„ ๋ณ€ํ™˜์„ ์œ„ํ•œ ๋ฆฌ์ŠคํŠธ ์ƒ์„ฑ
    df_rows = []

    for result in results:
        song_title = result['Song Title']
        song_singer = result['Singer']
        main_song_info = f"{song_singer} - {song_title}"

        for entry in result["Top 3 Similarities"]:
            combined_info = f"{entry['Singer']} - {entry['Title']}"
            df_rows.append({"1st ์ถ”์ฒœ ํ”Œ๋ ˆ์ด๋ฆฌ์ŠคํŠธ": main_song_info, "2nd ์ถ”์ฒœ ํ”Œ๋ ˆ์ด๋ฆฌ์ŠคํŠธ": combined_info})

    # ๋ฐ์ดํ„ฐํ”„๋ ˆ์ž„ ์ƒ์„ฑ
    final_music_playlist_recommendation = pd.DataFrame(df_rows)

    # ๊ณก ์ œ๋ชฉ ๊ทธ๋ฃนํ™”ํ•˜์—ฌ ์ฒซ ๋ฒˆ์งธ ํ–‰์—๋งŒ ๊ณก ์ œ๋ชฉ ํ‘œ์‹œ
    final_music_playlist_recommendation["1st ์ถ”์ฒœ ํ”Œ๋ ˆ์ด๋ฆฌ์ŠคํŠธ"] = final_music_playlist_recommendation.groupby("1st ์ถ”์ฒœ ํ”Œ๋ ˆ์ด๋ฆฌ์ŠคํŠธ")["1st ์ถ”์ฒœ ํ”Œ๋ ˆ์ด๋ฆฌ์ŠคํŠธ"].transform(
        lambda x: [x.iloc[0]] + [""] * (len(x) - 1)
    )

    return final_music_playlist_recommendation, comment, topics, image

# ์ผ๊ธฐ ์ฃผ์ œ ์ถ”์ฒœ ํ•จ์ˆ˜
def get_initial_response(style, sentence):
    style = options.get(int(style.split('.')[0]), "๐ŸŒผ ์นœ๊ทผํ•œ")
    system_prompt_momentum = (
        f"๋„ˆ๋Š” {style}์˜ ์ฑ—๋ด‡์ด์•ผ. ์‚ฌ์šฉ์ž๊ฐ€ ์ž‘์„ฑํ•œ ์ผ๊ธฐ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์ƒ๊ฐ์„ ์ •๋ฆฌํ•˜๊ณ  ๋‚ด๋ฉด์„ ๋Œ์•„๋ณผ ์ˆ˜ ์žˆ๋„๋ก "
        "๋„์™€์ฃผ๋Š” ๊ตฌ์ฒด์ ์ธ ์ผ๊ธฐ ์ฝ˜ํ…์ธ ๋‚˜ ์งˆ๋ฌธ 4-5๊ฐœ๋ฅผ ์ถ”์ฒœํ•ด์ค˜."
    )
    try:
        response = openai.ChatCompletion.create(
            model="gpt-4-turbo",
            messages=[
                {"role": "system", "content": system_prompt_momentum},
                {"role": "user", "content": sentence}
            ],
            temperature=1
        )
        return response.choices[0].message.content
    except Exception as e:
        return f"๐Ÿ“ ์ฃผ์ œ ์ถ”์ฒœ ์˜ค๋ฅ˜: {e}"

# Gradio ์ธํ„ฐํŽ˜์ด์Šค
with gr.Blocks() as app:
    gr.Markdown("# โœจ ์Šค๋งˆํŠธ ๊ฐ์ • ์ผ๊ธฐ ์„œ๋น„์Šค โœจ\n\n ์˜ค๋Š˜์˜ ํ•˜๋ฃจ๋ฅผ ๊ธฐ๋กํ•˜๋ฉด, ๊ทธ์— ๋งž๋Š” ํ”Œ๋ ˆ์ด๋ฆฌ์ŠคํŠธ์™€ ์ผ๊ธฐ ํšŒ๊ณ  ์ฝ˜ํ…์ธ ๋ฅผ ์ž๋™์œผ๋กœ ์ƒ์„ฑํ•ด๋“œ๋ฆฝ๋‹ˆ๋‹ค!")
    with gr.Row():
        with gr.Column():
            chatbot_style = gr.Radio(
                choices=[f"{k}. {v}" for k, v in options.items()],
                label="๐Ÿค– ์›ํ•˜๋Š” ์ฑ—๋ด‡ ์Šคํƒ€์ผ ์„ ํƒ"
            )
            diary_input = gr.Textbox(label="๐Ÿ“œ ์˜ค๋Š˜์˜ ํ•˜๋ฃจ ๊ธฐ๋กํ•˜๊ธฐ", placeholder="ex)์˜ค๋Š˜ ์†Œํ’๊ฐ€์„œ ๋ง›์žˆ๋Š” ๊ฑธ ๋งŽ์ด ๋จน์–ด์„œ ์—„์ฒญ ์‹ ๋‚ฌ์–ด")
            image_input = gr.Image(type="pil", label="๐Ÿ“ท ์–ผ๊ตด ํ‘œ์ • ์‚ฌ์ง„ ์—…๋กœ๋“œ")
            playlist_input = gr.Radio(["๋น„์Šทํ•œ", "์ƒ๋ฐ˜๋œ"], label="๐ŸŽง ์˜ค๋Š˜์˜ ๊ฐ์ •๊ณผ ใ…‡ใ…‡๋˜๋Š” ํ”Œ๋ ˆ์ด๋ฆฌ์ŠคํŠธ ์ถ”์ฒœ ๋ฐ›๊ธฐ")
            submit_btn = gr.Button("๐Ÿš€ ๋ถ„์„ ์‹œ์ž‘")

        with gr.Column():
            output_playlist = gr.Dataframe(label="๐ŸŽง ์ถ”์ฒœ ํ”Œ๋ ˆ์ด๋ฆฌ์ŠคํŠธ ")
            output_comment = gr.Textbox(label="๐Ÿ’ฌ AI ์ฝ”๋ฉ˜ํŠธ")
            output_topics = gr.Textbox(label="๐Ÿ“ ์ถ”์ฒœ ์ผ๊ธฐ ์ฝ˜ํ…์ธ ")
            output_image = gr.Image(label="๐Ÿ–ผ๏ธ ์ƒ์„ฑ๋œ ์˜ค๋Š˜์˜ ๊ฐ์ • ์บ๋ฆญํ„ฐ", type="pil", width=512, height=512)

    # ๋ฒ„ํŠผ ํด๋ฆญ ์ด๋ฒคํŠธ ์—ฐ๊ฒฐ
    submit_btn.click(
        fn=chatbot_diary_with_image,
        inputs=[chatbot_style, diary_input, image_input, playlist_input],
        outputs=[output_playlist, output_comment, output_topics, output_image]
    )

# ์•ฑ ์‹คํ–‰
app.launch(debug=True)