from PIL import Image import spaces import gradio as gr MODEL_ID = "davidr99/qwen2-7b-instruct-blackjack" from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor from qwen_vl_utils import process_vision_info @spaces.GPU(duration=30) def blackjack_ai(image): model = Qwen2VLForConditionalGeneration.from_pretrained(MODEL_ID, torch_dtype="auto", device="auto") processor = AutoProcessor.from_pretrained(MODEL_ID) instruction = "extract json from this image." messages = [ {"role": "user", "content": [ {"type": "image", "image": image}, {"type": "text", "text": instruction} ]} ] print(messages) # Preparation for inference text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cuda") # Inference: Generation of the output generated_ids = model.generate(**inputs, max_new_tokens=128) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) return output_text with gr.Blocks() as demo: image = gr.Image(type="filepath") submit = gr.Button("Submit") output = gr.TextArea() submit.click(blackjack_ai, inputs=[image], outputs=[output]) demo.launch()