davideuler
model default to default_model for mlx/gguf models, and add new text as optional layer; allow --no-original option to remove original content in pdf, just save the translated content
4a4fa23
__copyright__ = "Copyright (C) 2020 Nidhal Baccouri"
import os
from typing import List, Optional
from deep_translator.base import BaseTranslator
from deep_translator.constants import (
OPEN_AI_ENV_VAR,
OPEN_AI_BASE_URL_ENV_VAR,
OPEN_AI_MODEL_ENV_VAR,
)
from deep_translator.exceptions import ApiKeyException
class ChatGptTranslator(BaseTranslator):
"""
class that wraps functions, which use the ChatGPT
under the hood to translate word(s)
"""
def __init__(
self,
source: str = "auto",
target: str = "english",
api_key: Optional[str] = os.getenv(OPEN_AI_ENV_VAR, None),
model: Optional[str] = os.getenv(OPEN_AI_MODEL_ENV_VAR, "gpt-4o-mini"),
base_url: Optional[str] = os.getenv(OPEN_AI_BASE_URL_ENV_VAR, None),
**kwargs,
):
"""
@param api_key: your openai api key.
@param source: source language
@param target: target language
@param model: OpenAI model to use
@param base_url: custom OpenAI API base URL
"""
if not api_key:
raise ApiKeyException(env_var=OPEN_AI_ENV_VAR)
self.api_key = api_key
self.model = model
self.base_url = base_url
super().__init__(source=source, target=target, **kwargs)
def translate(self, text: str, **kwargs) -> str:
"""
@param text: text to translate
@return: translated text
"""
import openai
client = openai.OpenAI(
api_key=self.api_key,
base_url=self.base_url if self.base_url else None
)
prompt = f"Translate the text below into {self.target}.\n"
prompt += f'Text: "{text}"'
# if model is empty (for mlx_lm.server, the model should be default_model)
# export OPENAI_MODEL=default_model
response = client.chat.completions.create(
model=self.model if self.model else "default_model",
messages=[
{
"role": "user",
"content": prompt,
}
],
)
return response.choices[0].message.content
def translate_file(self, path: str, **kwargs) -> str:
return self._translate_file(path, **kwargs)
def translate_batch(self, batch: List[str], **kwargs) -> List[str]:
"""
@param batch: list of texts to translate
@return: list of translations
"""
return self._translate_batch(batch, **kwargs)