davideuler
model default to default_model for mlx/gguf models, and add new text as optional layer; allow --no-original option to remove original content in pdf, just save the translated content
4a4fa23
__copyright__ = "Copyright (C) 2020 Nidhal Baccouri" | |
import os | |
from typing import List, Optional | |
from deep_translator.base import BaseTranslator | |
from deep_translator.constants import ( | |
OPEN_AI_ENV_VAR, | |
OPEN_AI_BASE_URL_ENV_VAR, | |
OPEN_AI_MODEL_ENV_VAR, | |
) | |
from deep_translator.exceptions import ApiKeyException | |
class ChatGptTranslator(BaseTranslator): | |
""" | |
class that wraps functions, which use the ChatGPT | |
under the hood to translate word(s) | |
""" | |
def __init__( | |
self, | |
source: str = "auto", | |
target: str = "english", | |
api_key: Optional[str] = os.getenv(OPEN_AI_ENV_VAR, None), | |
model: Optional[str] = os.getenv(OPEN_AI_MODEL_ENV_VAR, "gpt-4o-mini"), | |
base_url: Optional[str] = os.getenv(OPEN_AI_BASE_URL_ENV_VAR, None), | |
**kwargs, | |
): | |
""" | |
@param api_key: your openai api key. | |
@param source: source language | |
@param target: target language | |
@param model: OpenAI model to use | |
@param base_url: custom OpenAI API base URL | |
""" | |
if not api_key: | |
raise ApiKeyException(env_var=OPEN_AI_ENV_VAR) | |
self.api_key = api_key | |
self.model = model | |
self.base_url = base_url | |
super().__init__(source=source, target=target, **kwargs) | |
def translate(self, text: str, **kwargs) -> str: | |
""" | |
@param text: text to translate | |
@return: translated text | |
""" | |
import openai | |
client = openai.OpenAI( | |
api_key=self.api_key, | |
base_url=self.base_url if self.base_url else None | |
) | |
prompt = f"Translate the text below into {self.target}.\n" | |
prompt += f'Text: "{text}"' | |
# if model is empty (for mlx_lm.server, the model should be default_model) | |
# export OPENAI_MODEL=default_model | |
response = client.chat.completions.create( | |
model=self.model if self.model else "default_model", | |
messages=[ | |
{ | |
"role": "user", | |
"content": prompt, | |
} | |
], | |
) | |
return response.choices[0].message.content | |
def translate_file(self, path: str, **kwargs) -> str: | |
return self._translate_file(path, **kwargs) | |
def translate_batch(self, batch: List[str], **kwargs) -> List[str]: | |
""" | |
@param batch: list of texts to translate | |
@return: list of translations | |
""" | |
return self._translate_batch(batch, **kwargs) | |