Spaces:
Running
on
Zero
Running
on
Zero
davanstrien
HF Staff
Remove language option from app.py and update requirements.txt to include additional packages and extra index URL for PyTorch
c2a6750
| import gradio as gr | |
| from PIL import Image | |
| import xml.etree.ElementTree as ET | |
| import os | |
| import torch | |
| from transformers import AutoProcessor, AutoModelForImageTextToText, pipeline | |
| # --- Global Model and Processor Initialization --- | |
| # Load the OCR model and processor once when the app starts | |
| try: | |
| HF_PROCESSOR = AutoProcessor.from_pretrained("reducto/RolmOCR") | |
| HF_MODEL = AutoModelForImageTextToText.from_pretrained( | |
| "reducto/RolmOCR", | |
| torch_dtype=torch.bfloat16, | |
| # attn_implementation="flash_attention_2", # User had this commented out | |
| device_map="auto" | |
| ) | |
| HF_PIPE = pipeline("image-text-to-text", model=HF_MODEL, processor=HF_PROCESSOR) | |
| print("Hugging Face OCR model loaded successfully.") | |
| except Exception as e: | |
| print(f"Error loading Hugging Face model: {e}") | |
| HF_PIPE = None | |
| # --- Helper Functions --- | |
| def get_alto_namespace(xml_file_path): | |
| """ | |
| Dynamically gets the ALTO namespace from the XML file. | |
| """ | |
| try: | |
| tree = ET.parse(xml_file_path) | |
| root = tree.getroot() | |
| if '}' in root.tag: | |
| return root.tag.split('}')[0] + '}' | |
| except ET.ParseError: | |
| print(f"Error parsing XML to find namespace: {xml_file_path}") | |
| return '' | |
| def parse_alto_xml_for_text(xml_file_path): | |
| """ | |
| Parses an ALTO XML file to extract text content. | |
| Returns: | |
| - full_text (str): All extracted text concatenated. | |
| """ | |
| full_text_lines = [] | |
| if not xml_file_path or not os.path.exists(xml_file_path): | |
| return "Error: XML file not provided or does not exist." | |
| try: | |
| ns_prefix = get_alto_namespace(xml_file_path) | |
| tree = ET.parse(xml_file_path) | |
| root = tree.getroot() | |
| for text_line in root.findall(f'.//{ns_prefix}TextLine'): | |
| line_text_parts = [] | |
| for string_element in text_line.findall(f'{ns_prefix}String'): | |
| text = string_element.get('CONTENT') | |
| if text: | |
| line_text_parts.append(text) | |
| if line_text_parts: | |
| full_text_lines.append(" ".join(line_text_parts)) | |
| return "\n".join(full_text_lines) | |
| except ET.ParseError as e: | |
| return f"Error parsing XML: {e}" | |
| except Exception as e: | |
| return f"An unexpected error occurred during XML parsing: {e}" | |
| def run_hf_ocr(image_path): | |
| """ | |
| Runs OCR on the provided image using the pre-loaded Hugging Face model. | |
| """ | |
| if HF_PIPE is None: | |
| return "Hugging Face OCR model not available." | |
| if image_path is None: | |
| return "No image provided for OCR." | |
| try: | |
| # Load the image using PIL, as the pipeline expects an image object or path | |
| pil_image = Image.open(image_path).convert("RGB") | |
| # The user's example output for the pipeline call was: | |
| # [{'generated_text': [{'role': 'user', ...}, {'role': 'assistant', 'content': "TEXT..."}]}] | |
| # This suggests the pipeline is returning a conversational style output. | |
| # We will try to call the pipeline with the image and prompt directly. | |
| ocr_results = HF_PIPE( | |
| pil_image, | |
| prompt="Return the plain text representation of this document as if you were reading it naturally.\n" | |
| # The pipeline should handle formatting this into messages if needed by the model. | |
| ) | |
| # Parse the output based on the user's example structure | |
| if isinstance(ocr_results, list) and ocr_results and 'generated_text' in ocr_results[0]: | |
| generated_content = ocr_results[0]['generated_text'] | |
| # Check if generated_content itself is the direct text (some pipelines do this) | |
| if isinstance(generated_content, str): | |
| return generated_content | |
| # Check for the conversational structure | |
| # [{'role': 'user', ...}, {'role': 'assistant', 'content': "TEXT..."}] | |
| if isinstance(generated_content, list) and generated_content: | |
| # The assistant's response is typically the last message in the list | |
| # or specifically the one with role 'assistant'. | |
| assistant_message = None | |
| for msg in reversed(generated_content): # Check from the end | |
| if isinstance(msg, dict) and msg.get('role') == 'assistant' and 'content' in msg: | |
| assistant_message = msg['content'] | |
| break | |
| if assistant_message: | |
| return assistant_message | |
| # Fallback if parsing the complex structure fails but we got some string | |
| if isinstance(generated_content, list) and generated_content and isinstance(generated_content[0], dict) and 'content' in generated_content[0]: | |
| # This is a guess if the structure is simpler than expected. | |
| # Or if the first part is the user prompt echo and second is assistant. | |
| if len(generated_content) > 1 and isinstance(generated_content[1], dict) and 'content' in generated_content[1]: | |
| return generated_content[1]['content'] # Assuming second part is assistant | |
| print(f"Unexpected OCR output structure from HF model: {ocr_results}") | |
| return "Error: Could not parse OCR model output. Please check console for details." | |
| else: | |
| print(f"Unexpected OCR output structure from HF model: {ocr_results}") | |
| return "Error: OCR model did not return expected output. Please check console for details." | |
| except Exception as e: | |
| print(f"Error during Hugging Face OCR: {e}") | |
| return f"Error during Hugging Face OCR: {str(e)}" | |
| # --- Gradio Interface Function --- | |
| def process_files(image_path, xml_path): | |
| """ | |
| Main function for the Gradio interface. | |
| Processes the image for display, runs OCR (Hugging Face model), | |
| and parses ALTO XML if provided. | |
| """ | |
| img_to_display = None | |
| alto_text_output = "ALTO XML not provided or not processed." | |
| hf_ocr_text_output = "Image not provided or OCR not run." | |
| if image_path: | |
| try: | |
| img_to_display = Image.open(image_path).convert("RGB") | |
| hf_ocr_text_output = run_hf_ocr(image_path) | |
| except Exception as e: | |
| img_to_display = None # Clear image if it failed to load | |
| hf_ocr_text_output = f"Error loading image or running HF OCR: {e}" | |
| else: | |
| hf_ocr_text_output = "Please upload an image to perform OCR." | |
| if xml_path: | |
| alto_text_output = parse_alto_xml_for_text(xml_path) | |
| else: | |
| alto_text_output = "No ALTO XML file uploaded." | |
| # If only XML is provided without an image | |
| if not image_path and xml_path: | |
| img_to_display = None # No image to display | |
| hf_ocr_text_output = "Upload an image to perform OCR." | |
| return img_to_display, alto_text_output, hf_ocr_text_output | |
| # --- Create Gradio App --- | |
| with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| gr.Markdown("# OCR Viewer and Extractor") | |
| gr.Markdown( | |
| "Upload an image to perform OCR using a Hugging Face model. " | |
| "Optionally, upload its corresponding ALTO OCR XML file to compare the extracted text." | |
| ) | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| image_input = gr.File(label="Upload Image (PNG, JPG, etc.)", type="filepath") | |
| xml_input = gr.File(label="Upload ALTO XML File (Optional, .xml)", type="filepath") | |
| submit_button = gr.Button("Process Image and XML", variant="primary") | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| output_image_display = gr.Image(label="Uploaded Image", type="pil", interactive=False) | |
| with gr.Column(scale=1): | |
| hf_ocr_output_textbox = gr.Textbox( | |
| label="OCR Output (Hugging Face Model)", | |
| lines=15, | |
| interactive=False, | |
| show_copy_button=True | |
| ) | |
| alto_xml_output_textbox = gr.Textbox( | |
| label="Text from ALTO XML", | |
| lines=15, | |
| interactive=False, | |
| show_copy_button=True | |
| ) | |
| submit_button.click( | |
| fn=process_files, | |
| inputs=[image_input, xml_input], | |
| outputs=[output_image_display, alto_xml_output_textbox, hf_ocr_output_textbox] | |
| ) | |
| gr.Markdown("---") | |
| gr.Markdown("### Example ALTO XML Snippet (for `String` element extraction):") | |
| gr.Code( | |
| value=( | |
| """<alto xmlns="http://www.loc.gov/standards/alto/v3/alto.xsd"> | |
| <Description>...</Description> | |
| <Styles>...</Styles> | |
| <Layout> | |
| <Page ID="Page13" PHYSICAL_IMG_NR="13" WIDTH="2394" HEIGHT="3612"> | |
| <PrintSpace> | |
| <TextLine WIDTH="684" HEIGHT="108" ID="p13_t1" HPOS="465" VPOS="196"> | |
| <String ID="p13_w1" CONTENT="Introduction" HPOS="465" VPOS="196" WIDTH="684" HEIGHT="108" STYLEREFS="font0"/> | |
| </TextLine> | |
| <TextLine WIDTH="1798" HEIGHT="51" ID="p13_t2" HPOS="492" VPOS="523"> | |
| <String ID="p13_w2" CONTENT="Britain" HPOS="492" VPOS="523" WIDTH="166" HEIGHT="51" STYLEREFS="font1"/> | |
| <SP WIDTH="24" VPOS="523" HPOS="658"/> | |
| <String ID="p13_w3" CONTENT="1981" HPOS="682" VPOS="523" WIDTH="117" HEIGHT="51" STYLEREFS="font1"/> | |
| <!-- ... more String and SP elements ... --> | |
| </TextLine> | |
| <!-- ... more TextLine elements ... --> | |
| </PrintSpace> | |
| </Page> | |
| </Layout> | |
| </alto>""" | |
| ), | |
| interactive=False | |
| ) | |
| if __name__ == "__main__": | |
| # Removed dummy file creation as it's less relevant for single file focus | |
| print("Attempting to launch Gradio demo...") | |
| print("If the Hugging Face model is large, initial startup might take some time due to model download/loading.") | |
| demo.launch() |