Spaces:
Runtime error
Runtime error
import os | |
import sys | |
import cv2 | |
import numpy as np | |
import time | |
import json | |
from ppocr.utils.logging import get_logger | |
from ppocr.utils.utility import check_and_read | |
import tools.infer.utility as utility | |
from ppocr.data import create_operators, transform | |
from ppocr.postprocess import build_post_process | |
class TextDetector(object): | |
def __init__(self, args): | |
self.args = args | |
self.det_algorithm = args.det_algorithm | |
self.use_onnx = args.use_onnx | |
pre_process_list = [{ | |
'DetResizeForTest': { | |
'limit_side_len': args.det_limit_side_len, | |
'limit_type': args.det_limit_type, | |
} | |
}, { | |
'NormalizeImage': { | |
'std': [0.229, 0.224, 0.225], | |
'mean': [0.485, 0.456, 0.406], | |
'scale': '1./255.', | |
'order': 'hwc' | |
} | |
}, { | |
'ToCHWImage': None | |
}, { | |
'KeepKeys': { | |
'keep_keys': ['image', 'shape'] | |
} | |
}] | |
postprocess_params = {} | |
if self.det_algorithm == "DB": | |
postprocess_params['name'] = 'DBPostProcess' | |
postprocess_params["thresh"] = args.det_db_thresh | |
postprocess_params["box_thresh"] = args.det_db_box_thresh | |
postprocess_params["max_candidates"] = 1000 | |
postprocess_params["unclip_ratio"] = args.det_db_unclip_ratio | |
postprocess_params["use_dilation"] = args.use_dilation | |
postprocess_params["score_mode"] = args.det_db_score_mode | |
postprocess_params["box_type"] = args.det_box_type | |
elif self.det_algorithm == "DB++": | |
postprocess_params['name'] = 'DBPostProcess' | |
postprocess_params["thresh"] = args.det_db_thresh | |
postprocess_params["box_thresh"] = args.det_db_box_thresh | |
postprocess_params["max_candidates"] = 1000 | |
postprocess_params["unclip_ratio"] = args.det_db_unclip_ratio | |
postprocess_params["use_dilation"] = args.use_dilation | |
postprocess_params["score_mode"] = args.det_db_score_mode | |
postprocess_params["box_type"] = args.det_box_type | |
pre_process_list[1] = { | |
'NormalizeImage': { | |
'std': [1.0, 1.0, 1.0], | |
'mean': | |
[0.48109378172549, 0.45752457890196, 0.40787054090196], | |
'scale': '1./255.', | |
'order': 'hwc' | |
} | |
} | |
elif self.det_algorithm == "EAST": | |
postprocess_params['name'] = 'EASTPostProcess' | |
postprocess_params["score_thresh"] = args.det_east_score_thresh | |
postprocess_params["cover_thresh"] = args.det_east_cover_thresh | |
postprocess_params["nms_thresh"] = args.det_east_nms_thresh | |
elif self.det_algorithm == "SAST": | |
pre_process_list[0] = { | |
'DetResizeForTest': { | |
'resize_long': args.det_limit_side_len | |
} | |
} | |
postprocess_params['name'] = 'SASTPostProcess' | |
postprocess_params["score_thresh"] = args.det_sast_score_thresh | |
postprocess_params["nms_thresh"] = args.det_sast_nms_thresh | |
if args.det_box_type == 'poly': | |
postprocess_params["sample_pts_num"] = 6 | |
postprocess_params["expand_scale"] = 1.2 | |
postprocess_params["shrink_ratio_of_width"] = 0.2 | |
else: | |
postprocess_params["sample_pts_num"] = 2 | |
postprocess_params["expand_scale"] = 1.0 | |
postprocess_params["shrink_ratio_of_width"] = 0.3 | |
elif self.det_algorithm == "PSE": | |
postprocess_params['name'] = 'PSEPostProcess' | |
postprocess_params["thresh"] = args.det_pse_thresh | |
postprocess_params["box_thresh"] = args.det_pse_box_thresh | |
postprocess_params["min_area"] = args.det_pse_min_area | |
postprocess_params["box_type"] = args.det_box_type | |
postprocess_params["scale"] = args.det_pse_scale | |
elif self.det_algorithm == "FCE": | |
pre_process_list[0] = { | |
'DetResizeForTest': { | |
'rescale_img': [1080, 736] | |
} | |
} | |
postprocess_params['name'] = 'FCEPostProcess' | |
postprocess_params["scales"] = args.scales | |
postprocess_params["alpha"] = args.alpha | |
postprocess_params["beta"] = args.beta | |
postprocess_params["fourier_degree"] = args.fourier_degree | |
postprocess_params["box_type"] = args.det_box_type | |
elif self.det_algorithm == "CT": | |
pre_process_list[0] = {'ScaleAlignedShort': {'short_size': 640}} | |
postprocess_params['name'] = 'CTPostProcess' | |
else: | |
logger.info("unknown det_algorithm:{}".format(self.det_algorithm)) | |
sys.exit(0) | |
self.preprocess_op = create_operators(pre_process_list) | |
self.postprocess_op = build_post_process(postprocess_params) | |
self.predictor, self.input_tensor, self.output_tensors, self.config = utility.create_predictor( | |
args, 'det', logger) | |
if self.use_onnx: | |
img_h, img_w = self.input_tensor.shape[2:] | |
if isinstance(img_h, str) or isinstance(img_w, str): | |
pass | |
elif img_h is not None and img_w is not None and img_h > 0 and img_w > 0: | |
pre_process_list[0] = { | |
'DetResizeForTest': { | |
'image_shape': [img_h, img_w] | |
} | |
} | |
self.preprocess_op = create_operators(pre_process_list) | |
if args.benchmark: | |
import auto_log | |
pid = os.getpid() | |
gpu_id = utility.get_infer_gpuid() | |
self.autolog = auto_log.AutoLogger( | |
model_name="det", | |
model_precision=args.precision, | |
batch_size=1, | |
data_shape="dynamic", | |
save_path=None, | |
inference_config=self.config, | |
pids=pid, | |
process_name=None, | |
gpu_ids=gpu_id if args.use_gpu else None, | |
time_keys=[ | |
'preprocess_time', 'inference_time', 'postprocess_time' | |
], | |
warmup=2, | |
logger=logger) | |
def order_points_clockwise(self, pts): | |
rect = np.zeros((4, 2), dtype="float32") | |
s = pts.sum(axis=1) | |
rect[0] = pts[np.argmin(s)] | |
rect[2] = pts[np.argmax(s)] | |
tmp = np.delete(pts, (np.argmin(s), np.argmax(s)), axis=0) | |
diff = np.diff(np.array(tmp), axis=1) | |
rect[1] = tmp[np.argmin(diff)] | |
rect[3] = tmp[np.argmax(diff)] | |
return rect | |
def clip_det_res(self, points, img_height, img_width): | |
for pno in range(points.shape[0]): | |
points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1)) | |
points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1)) | |
return points | |
def filter_tag_det_res(self, dt_boxes, image_shape): | |
img_height, img_width = image_shape[0:2] | |
dt_boxes_new = [] | |
for box in dt_boxes: | |
if type(box) is list: | |
box = np.array(box) | |
box = self.order_points_clockwise(box) | |
box = self.clip_det_res(box, img_height, img_width) | |
rect_width = int(np.linalg.norm(box[0] - box[1])) | |
rect_height = int(np.linalg.norm(box[0] - box[3])) | |
if rect_width <= 3 or rect_height <= 3: | |
continue | |
dt_boxes_new.append(box) | |
dt_boxes = np.array(dt_boxes_new) | |
return dt_boxes | |
def filter_tag_det_res_only_clip(self, dt_boxes, image_shape): | |
img_height, img_width = image_shape[0:2] | |
dt_boxes_new = [] | |
for box in dt_boxes: | |
if type(box) is list: | |
box = np.array(box) | |
box = self.clip_det_res(box, img_height, img_width) | |
dt_boxes_new.append(box) | |
dt_boxes = np.array(dt_boxes_new) | |
return dt_boxes | |
def __call__(self, img): | |
ori_im = img.copy() | |
data = {'image': img} | |
st = time.time() | |
if self.args.benchmark: | |
self.autolog.times.start() | |
data = transform(data, self.preprocess_op) | |
img, shape_list = data | |
if img is None: | |
return None, 0 | |
img = np.expand_dims(img, axis=0) | |
shape_list = np.expand_dims(shape_list, axis=0) | |
img = img.copy() | |
if self.args.benchmark: | |
self.autolog.times.stamp() | |
if self.use_onnx: | |
input_dict = {} | |
input_dict[self.input_tensor.name] = img | |
outputs = self.predictor.run(self.output_tensors, input_dict) | |
else: | |
self.input_tensor.copy_from_cpu(img) | |
self.predictor.run() | |
outputs = [] | |
for output_tensor in self.output_tensors: | |
output = output_tensor.copy_to_cpu() | |
outputs.append(output) | |
if self.args.benchmark: | |
self.autolog.times.stamp() | |
preds = {} | |
if self.det_algorithm == "EAST": | |
preds['f_geo'] = outputs[0] | |
preds['f_score'] = outputs[1] | |
elif self.det_algorithm == 'SAST': | |
preds['f_border'] = outputs[0] | |
preds['f_score'] = outputs[1] | |
preds['f_tco'] = outputs[2] | |
preds['f_tvo'] = outputs[3] | |
elif self.det_algorithm in ['DB', 'PSE', 'DB++']: | |
preds['maps'] = outputs[0] | |
elif self.det_algorithm == 'FCE': | |
for i, output in enumerate(outputs): | |
preds['level_{}'.format(i)] = output | |
elif self.det_algorithm == "CT": | |
preds['maps'] = outputs[0] | |
preds['score'] = outputs[1] | |
else: | |
raise NotImplementedError | |
post_result = self.postprocess_op(preds, shape_list) | |
dt_boxes = post_result[0]['points'] | |
if self.args.det_box_type == 'poly': | |
dt_boxes = self.filter_tag_det_res_only_clip(dt_boxes, ori_im.shape) | |
else: | |
dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im.shape) | |
if self.args.benchmark: | |
self.autolog.times.end(stamp=True) | |
et = time.time() | |
return dt_boxes, et - st | |
logger = get_logger() | |
def run_text_detector(img, use_gpu, det_model_dir, draw_img_save_dir): | |
s_img=img | |
args = utility.parse_args() | |
args.image_dir = None # No need for image directory in this case | |
args.use_gpu = use_gpu | |
# args.det_algorithm = det_algorithm | |
args.det_model_dir = det_model_dir | |
args.draw_img_save_dir = draw_img_save_dir | |
text_detector = TextDetector(args) | |
total_time = 0 | |
os.makedirs(draw_img_save_dir, exist_ok=True) | |
st = time.time() | |
dt_boxes, _ = text_detector(s_img) | |
elapse = time.time() - st | |
total_time += elapse | |
save_results = [] | |
save_pred = "\t" + str(json.dumps([x.tolist() for x in dt_boxes])) + "\n" | |
save_results.append(save_pred) | |
# logger.info(save_pred) | |
# logger.info("The predict time: {}".format(elapse)) | |
# src_im = utility.draw_text_det_res(dt_boxes, s_img) | |
img_path = os.path.join(draw_img_save_dir, "det_res.png") | |
# cv2.imwrite(img_path, src_im) | |
# logger.info("The visualized image saved in {}".format(img_path)) | |
with open(os.path.join(draw_img_save_dir, "det_results.txt"), 'w') as f: | |
f.writelines(save_results) | |
f.close() | |
# text_detector.autolog.report() | |
# if __name__ == "__main__": | |
# # Load your image using cv2.imread or any other method | |
# image_path = "2_1.1.jpg" | |
# img = cv2.imread(image_path) | |
# run_text_detector( | |
# img=img, | |
# use_gpu=False, | |
# # det_algorithm="DB", | |
# det_model_dir="ch_PP-OCRv4_det_infer/", | |
# draw_img_save_dir='output/' | |
# ) | |