Spaces:
Runtime error
Runtime error
| # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import numpy as np | |
| from scipy.special import softmax | |
| def hard_nms(box_scores, iou_threshold, top_k=-1, candidate_size=200): | |
| """ | |
| Args: | |
| box_scores (N, 5): boxes in corner-form and probabilities. | |
| iou_threshold: intersection over union threshold. | |
| top_k: keep top_k results. If k <= 0, keep all the results. | |
| candidate_size: only consider the candidates with the highest scores. | |
| Returns: | |
| picked: a list of indexes of the kept boxes | |
| """ | |
| scores = box_scores[:, -1] | |
| boxes = box_scores[:, :-1] | |
| picked = [] | |
| indexes = np.argsort(scores) | |
| indexes = indexes[-candidate_size:] | |
| while len(indexes) > 0: | |
| current = indexes[-1] | |
| picked.append(current) | |
| if 0 < top_k == len(picked) or len(indexes) == 1: | |
| break | |
| current_box = boxes[current, :] | |
| indexes = indexes[:-1] | |
| rest_boxes = boxes[indexes, :] | |
| iou = iou_of( | |
| rest_boxes, | |
| np.expand_dims( | |
| current_box, axis=0), ) | |
| indexes = indexes[iou <= iou_threshold] | |
| return box_scores[picked, :] | |
| def iou_of(boxes0, boxes1, eps=1e-5): | |
| """Return intersection-over-union (Jaccard index) of boxes. | |
| Args: | |
| boxes0 (N, 4): ground truth boxes. | |
| boxes1 (N or 1, 4): predicted boxes. | |
| eps: a small number to avoid 0 as denominator. | |
| Returns: | |
| iou (N): IoU values. | |
| """ | |
| overlap_left_top = np.maximum(boxes0[..., :2], boxes1[..., :2]) | |
| overlap_right_bottom = np.minimum(boxes0[..., 2:], boxes1[..., 2:]) | |
| overlap_area = area_of(overlap_left_top, overlap_right_bottom) | |
| area0 = area_of(boxes0[..., :2], boxes0[..., 2:]) | |
| area1 = area_of(boxes1[..., :2], boxes1[..., 2:]) | |
| return overlap_area / (area0 + area1 - overlap_area + eps) | |
| def area_of(left_top, right_bottom): | |
| """Compute the areas of rectangles given two corners. | |
| Args: | |
| left_top (N, 2): left top corner. | |
| right_bottom (N, 2): right bottom corner. | |
| Returns: | |
| area (N): return the area. | |
| """ | |
| hw = np.clip(right_bottom - left_top, 0.0, None) | |
| return hw[..., 0] * hw[..., 1] | |
| class PicoDetPostProcess(object): | |
| """ | |
| Args: | |
| input_shape (int): network input image size | |
| ori_shape (int): ori image shape of before padding | |
| scale_factor (float): scale factor of ori image | |
| enable_mkldnn (bool): whether to open MKLDNN | |
| """ | |
| def __init__(self, | |
| layout_dict_path, | |
| strides=[8, 16, 32, 64], | |
| score_threshold=0.4, | |
| nms_threshold=0.5, | |
| nms_top_k=1000, | |
| keep_top_k=100): | |
| self.labels = self.load_layout_dict(layout_dict_path) | |
| self.strides = strides | |
| self.score_threshold = score_threshold | |
| self.nms_threshold = nms_threshold | |
| self.nms_top_k = nms_top_k | |
| self.keep_top_k = keep_top_k | |
| def load_layout_dict(self, layout_dict_path): | |
| with open(layout_dict_path, 'r', encoding='utf-8') as fp: | |
| labels = fp.readlines() | |
| return [label.strip('\n') for label in labels] | |
| def warp_boxes(self, boxes, ori_shape): | |
| """Apply transform to boxes | |
| """ | |
| width, height = ori_shape[1], ori_shape[0] | |
| n = len(boxes) | |
| if n: | |
| # warp points | |
| xy = np.ones((n * 4, 3)) | |
| xy[:, :2] = boxes[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape( | |
| n * 4, 2) # x1y1, x2y2, x1y2, x2y1 | |
| # xy = xy @ M.T # transform | |
| xy = (xy[:, :2] / xy[:, 2:3]).reshape(n, 8) # rescale | |
| # create new boxes | |
| x = xy[:, [0, 2, 4, 6]] | |
| y = xy[:, [1, 3, 5, 7]] | |
| xy = np.concatenate( | |
| (x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T | |
| # clip boxes | |
| xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width) | |
| xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height) | |
| return xy.astype(np.float32) | |
| else: | |
| return boxes | |
| def img_info(self, ori_img, img): | |
| origin_shape = ori_img.shape | |
| resize_shape = img.shape | |
| im_scale_y = resize_shape[2] / float(origin_shape[0]) | |
| im_scale_x = resize_shape[3] / float(origin_shape[1]) | |
| scale_factor = np.array([im_scale_y, im_scale_x], dtype=np.float32) | |
| img_shape = np.array(img.shape[2:], dtype=np.float32) | |
| input_shape = np.array(img).astype('float32').shape[2:] | |
| ori_shape = np.array((img_shape, )).astype('float32') | |
| scale_factor = np.array((scale_factor, )).astype('float32') | |
| return ori_shape, input_shape, scale_factor | |
| def __call__(self, ori_img, img, preds): | |
| scores, raw_boxes = preds['boxes'], preds['boxes_num'] | |
| batch_size = raw_boxes[0].shape[0] | |
| reg_max = int(raw_boxes[0].shape[-1] / 4 - 1) | |
| out_boxes_num = [] | |
| out_boxes_list = [] | |
| results = [] | |
| ori_shape, input_shape, scale_factor = self.img_info(ori_img, img) | |
| for batch_id in range(batch_size): | |
| # generate centers | |
| decode_boxes = [] | |
| select_scores = [] | |
| for stride, box_distribute, score in zip(self.strides, raw_boxes, | |
| scores): | |
| box_distribute = box_distribute[batch_id] | |
| score = score[batch_id] | |
| # centers | |
| fm_h = input_shape[0] / stride | |
| fm_w = input_shape[1] / stride | |
| h_range = np.arange(fm_h) | |
| w_range = np.arange(fm_w) | |
| ww, hh = np.meshgrid(w_range, h_range) | |
| ct_row = (hh.flatten() + 0.5) * stride | |
| ct_col = (ww.flatten() + 0.5) * stride | |
| center = np.stack((ct_col, ct_row, ct_col, ct_row), axis=1) | |
| # box distribution to distance | |
| reg_range = np.arange(reg_max + 1) | |
| box_distance = box_distribute.reshape((-1, reg_max + 1)) | |
| box_distance = softmax(box_distance, axis=1) | |
| box_distance = box_distance * np.expand_dims(reg_range, axis=0) | |
| box_distance = np.sum(box_distance, axis=1).reshape((-1, 4)) | |
| box_distance = box_distance * stride | |
| # top K candidate | |
| topk_idx = np.argsort(score.max(axis=1))[::-1] | |
| topk_idx = topk_idx[:self.nms_top_k] | |
| center = center[topk_idx] | |
| score = score[topk_idx] | |
| box_distance = box_distance[topk_idx] | |
| # decode box | |
| decode_box = center + [-1, -1, 1, 1] * box_distance | |
| select_scores.append(score) | |
| decode_boxes.append(decode_box) | |
| # nms | |
| bboxes = np.concatenate(decode_boxes, axis=0) | |
| confidences = np.concatenate(select_scores, axis=0) | |
| picked_box_probs = [] | |
| picked_labels = [] | |
| for class_index in range(0, confidences.shape[1]): | |
| probs = confidences[:, class_index] | |
| mask = probs > self.score_threshold | |
| probs = probs[mask] | |
| if probs.shape[0] == 0: | |
| continue | |
| subset_boxes = bboxes[mask, :] | |
| box_probs = np.concatenate( | |
| [subset_boxes, probs.reshape(-1, 1)], axis=1) | |
| box_probs = hard_nms( | |
| box_probs, | |
| iou_threshold=self.nms_threshold, | |
| top_k=self.keep_top_k, ) | |
| picked_box_probs.append(box_probs) | |
| picked_labels.extend([class_index] * box_probs.shape[0]) | |
| if len(picked_box_probs) == 0: | |
| out_boxes_list.append(np.empty((0, 4))) | |
| out_boxes_num.append(0) | |
| else: | |
| picked_box_probs = np.concatenate(picked_box_probs) | |
| # resize output boxes | |
| picked_box_probs[:, :4] = self.warp_boxes( | |
| picked_box_probs[:, :4], ori_shape[batch_id]) | |
| im_scale = np.concatenate([ | |
| scale_factor[batch_id][::-1], scale_factor[batch_id][::-1] | |
| ]) | |
| picked_box_probs[:, :4] /= im_scale | |
| # clas score box | |
| out_boxes_list.append( | |
| np.concatenate( | |
| [ | |
| np.expand_dims( | |
| np.array(picked_labels), | |
| axis=-1), np.expand_dims( | |
| picked_box_probs[:, 4], axis=-1), | |
| picked_box_probs[:, :4] | |
| ], | |
| axis=1)) | |
| out_boxes_num.append(len(picked_labels)) | |
| out_boxes_list = np.concatenate(out_boxes_list, axis=0) | |
| out_boxes_num = np.asarray(out_boxes_num).astype(np.int32) | |
| for dt in out_boxes_list: | |
| clsid, bbox, score = int(dt[0]), dt[2:], dt[1] | |
| label = self.labels[clsid] | |
| result = {'bbox': bbox, 'label': label} | |
| results.append(result) | |
| return results | |