Spaces:
Runtime error
Runtime error
| # copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ | |
| This code is refer from: | |
| https://github.com/FudanVI/FudanOCR/blob/main/scene-text-telescope/model/tbsrn.py | |
| """ | |
| import math | |
| import warnings | |
| import numpy as np | |
| import paddle | |
| from paddle import nn | |
| import string | |
| warnings.filterwarnings("ignore") | |
| from .tps_spatial_transformer import TPSSpatialTransformer | |
| from .stn import STN as STNHead | |
| from .tsrn import GruBlock, mish, UpsampleBLock | |
| from ppocr.modeling.heads.sr_rensnet_transformer import Transformer, LayerNorm, \ | |
| PositionwiseFeedForward, MultiHeadedAttention | |
| def positionalencoding2d(d_model, height, width): | |
| """ | |
| :param d_model: dimension of the model | |
| :param height: height of the positions | |
| :param width: width of the positions | |
| :return: d_model*height*width position matrix | |
| """ | |
| if d_model % 4 != 0: | |
| raise ValueError("Cannot use sin/cos positional encoding with " | |
| "odd dimension (got dim={:d})".format(d_model)) | |
| pe = paddle.zeros([d_model, height, width]) | |
| # Each dimension use half of d_model | |
| d_model = int(d_model / 2) | |
| div_term = paddle.exp( | |
| paddle.arange(0., d_model, 2, dtype='int64') * -(math.log(10000.0) / d_model)) | |
| pos_w = paddle.arange(0., width, dtype='float32').unsqueeze(1) | |
| pos_h = paddle.arange(0., height, dtype='float32').unsqueeze(1) | |
| pe[0:d_model:2, :, :] = paddle.sin(pos_w * div_term).transpose( | |
| [1, 0]).unsqueeze(1).tile([1, height, 1]) | |
| pe[1:d_model:2, :, :] = paddle.cos(pos_w * div_term).transpose( | |
| [1, 0]).unsqueeze(1).tile([1, height, 1]) | |
| pe[d_model::2, :, :] = paddle.sin(pos_h * div_term).transpose( | |
| [1, 0]).unsqueeze(2).tile([1, 1, width]) | |
| pe[d_model + 1::2, :, :] = paddle.cos(pos_h * div_term).transpose( | |
| [1, 0]).unsqueeze(2).tile([1, 1, width]) | |
| return pe | |
| class FeatureEnhancer(nn.Layer): | |
| def __init__(self): | |
| super(FeatureEnhancer, self).__init__() | |
| self.multihead = MultiHeadedAttention(h=4, d_model=128, dropout=0.1) | |
| self.mul_layernorm1 = LayerNorm(features=128) | |
| self.pff = PositionwiseFeedForward(128, 128) | |
| self.mul_layernorm3 = LayerNorm(features=128) | |
| self.linear = nn.Linear(128, 64) | |
| def forward(self, conv_feature): | |
| ''' | |
| text : (batch, seq_len, embedding_size) | |
| global_info: (batch, embedding_size, 1, 1) | |
| conv_feature: (batch, channel, H, W) | |
| ''' | |
| batch = paddle.shape(conv_feature)[0] | |
| position2d = positionalencoding2d( | |
| 64, 16, 64).cast('float32').unsqueeze(0).reshape([1, 64, 1024]) | |
| position2d = position2d.tile([batch, 1, 1]) | |
| conv_feature = paddle.concat([conv_feature, position2d], | |
| 1) # batch, 128(64+64), 32, 128 | |
| result = conv_feature.transpose([0, 2, 1]) | |
| origin_result = result | |
| result = self.mul_layernorm1(origin_result + self.multihead( | |
| result, result, result, mask=None)[0]) | |
| origin_result = result | |
| result = self.mul_layernorm3(origin_result + self.pff(result)) | |
| result = self.linear(result) | |
| return result.transpose([0, 2, 1]) | |
| def str_filt(str_, voc_type): | |
| alpha_dict = { | |
| 'digit': string.digits, | |
| 'lower': string.digits + string.ascii_lowercase, | |
| 'upper': string.digits + string.ascii_letters, | |
| 'all': string.digits + string.ascii_letters + string.punctuation | |
| } | |
| if voc_type == 'lower': | |
| str_ = str_.lower() | |
| for char in str_: | |
| if char not in alpha_dict[voc_type]: | |
| str_ = str_.replace(char, '') | |
| str_ = str_.lower() | |
| return str_ | |
| class TBSRN(nn.Layer): | |
| def __init__(self, | |
| in_channels=3, | |
| scale_factor=2, | |
| width=128, | |
| height=32, | |
| STN=True, | |
| srb_nums=5, | |
| mask=False, | |
| hidden_units=32, | |
| infer_mode=False): | |
| super(TBSRN, self).__init__() | |
| in_planes = 3 | |
| if mask: | |
| in_planes = 4 | |
| assert math.log(scale_factor, 2) % 1 == 0 | |
| upsample_block_num = int(math.log(scale_factor, 2)) | |
| self.block1 = nn.Sequential( | |
| nn.Conv2D( | |
| in_planes, 2 * hidden_units, kernel_size=9, padding=4), | |
| nn.PReLU() | |
| # nn.ReLU() | |
| ) | |
| self.srb_nums = srb_nums | |
| for i in range(srb_nums): | |
| setattr(self, 'block%d' % (i + 2), | |
| RecurrentResidualBlock(2 * hidden_units)) | |
| setattr( | |
| self, | |
| 'block%d' % (srb_nums + 2), | |
| nn.Sequential( | |
| nn.Conv2D( | |
| 2 * hidden_units, | |
| 2 * hidden_units, | |
| kernel_size=3, | |
| padding=1), | |
| nn.BatchNorm2D(2 * hidden_units))) | |
| # self.non_local = NonLocalBlock2D(64, 64) | |
| block_ = [ | |
| UpsampleBLock(2 * hidden_units, 2) | |
| for _ in range(upsample_block_num) | |
| ] | |
| block_.append( | |
| nn.Conv2D( | |
| 2 * hidden_units, in_planes, kernel_size=9, padding=4)) | |
| setattr(self, 'block%d' % (srb_nums + 3), nn.Sequential(*block_)) | |
| self.tps_inputsize = [height // scale_factor, width // scale_factor] | |
| tps_outputsize = [height // scale_factor, width // scale_factor] | |
| num_control_points = 20 | |
| tps_margins = [0.05, 0.05] | |
| self.stn = STN | |
| self.out_channels = in_channels | |
| if self.stn: | |
| self.tps = TPSSpatialTransformer( | |
| output_image_size=tuple(tps_outputsize), | |
| num_control_points=num_control_points, | |
| margins=tuple(tps_margins)) | |
| self.stn_head = STNHead( | |
| in_channels=in_planes, | |
| num_ctrlpoints=num_control_points, | |
| activation='none') | |
| self.infer_mode = infer_mode | |
| self.english_alphabet = '-0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ' | |
| self.english_dict = {} | |
| for index in range(len(self.english_alphabet)): | |
| self.english_dict[self.english_alphabet[index]] = index | |
| transformer = Transformer( | |
| alphabet='-0123456789abcdefghijklmnopqrstuvwxyz') | |
| self.transformer = transformer | |
| for param in self.transformer.parameters(): | |
| param.trainable = False | |
| def label_encoder(self, label): | |
| batch = len(label) | |
| length = [len(i) for i in label] | |
| length_tensor = paddle.to_tensor(length, dtype='int64') | |
| max_length = max(length) | |
| input_tensor = np.zeros((batch, max_length)) | |
| for i in range(batch): | |
| for j in range(length[i] - 1): | |
| input_tensor[i][j + 1] = self.english_dict[label[i][j]] | |
| text_gt = [] | |
| for i in label: | |
| for j in i: | |
| text_gt.append(self.english_dict[j]) | |
| text_gt = paddle.to_tensor(text_gt, dtype='int64') | |
| input_tensor = paddle.to_tensor(input_tensor, dtype='int64') | |
| return length_tensor, input_tensor, text_gt | |
| def forward(self, x): | |
| output = {} | |
| if self.infer_mode: | |
| output["lr_img"] = x | |
| y = x | |
| else: | |
| output["lr_img"] = x[0] | |
| output["hr_img"] = x[1] | |
| y = x[0] | |
| if self.stn and self.training: | |
| _, ctrl_points_x = self.stn_head(y) | |
| y, _ = self.tps(y, ctrl_points_x) | |
| block = {'1': self.block1(y)} | |
| for i in range(self.srb_nums + 1): | |
| block[str(i + 2)] = getattr(self, | |
| 'block%d' % (i + 2))(block[str(i + 1)]) | |
| block[str(self.srb_nums + 3)] = getattr(self, 'block%d' % (self.srb_nums + 3)) \ | |
| ((block['1'] + block[str(self.srb_nums + 2)])) | |
| sr_img = paddle.tanh(block[str(self.srb_nums + 3)]) | |
| output["sr_img"] = sr_img | |
| if self.training: | |
| hr_img = x[1] | |
| # add transformer | |
| label = [str_filt(i, 'lower') + '-' for i in x[2]] | |
| length_tensor, input_tensor, text_gt = self.label_encoder(label) | |
| hr_pred, word_attention_map_gt, hr_correct_list = self.transformer( | |
| hr_img, length_tensor, input_tensor) | |
| sr_pred, word_attention_map_pred, sr_correct_list = self.transformer( | |
| sr_img, length_tensor, input_tensor) | |
| output["hr_img"] = hr_img | |
| output["hr_pred"] = hr_pred | |
| output["text_gt"] = text_gt | |
| output["word_attention_map_gt"] = word_attention_map_gt | |
| output["sr_pred"] = sr_pred | |
| output["word_attention_map_pred"] = word_attention_map_pred | |
| return output | |
| class RecurrentResidualBlock(nn.Layer): | |
| def __init__(self, channels): | |
| super(RecurrentResidualBlock, self).__init__() | |
| self.conv1 = nn.Conv2D(channels, channels, kernel_size=3, padding=1) | |
| self.bn1 = nn.BatchNorm2D(channels) | |
| self.gru1 = GruBlock(channels, channels) | |
| # self.prelu = nn.ReLU() | |
| self.prelu = mish() | |
| self.conv2 = nn.Conv2D(channels, channels, kernel_size=3, padding=1) | |
| self.bn2 = nn.BatchNorm2D(channels) | |
| self.gru2 = GruBlock(channels, channels) | |
| self.feature_enhancer = FeatureEnhancer() | |
| for p in self.parameters(): | |
| if p.dim() > 1: | |
| paddle.nn.initializer.XavierUniform(p) | |
| def forward(self, x): | |
| residual = self.conv1(x) | |
| residual = self.bn1(residual) | |
| residual = self.prelu(residual) | |
| residual = self.conv2(residual) | |
| residual = self.bn2(residual) | |
| size = paddle.shape(residual) | |
| residual = residual.reshape([size[0], size[1], -1]) | |
| residual = self.feature_enhancer(residual) | |
| residual = residual.reshape([size[0], size[1], size[2], size[3]]) | |
| return x + residual | |