Spaces:
Runtime error
Runtime error
| # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from __future__ import absolute_import | |
| from __future__ import division | |
| from __future__ import print_function | |
| import paddle | |
| from paddle import nn | |
| from ppocr.modeling.heads.rec_ctc_head import get_para_bias_attr | |
| from ppocr.modeling.backbones.rec_svtrnet import Block, ConvBNLayer, trunc_normal_, zeros_, ones_ | |
| class Im2Seq(nn.Layer): | |
| def __init__(self, in_channels, **kwargs): | |
| super().__init__() | |
| self.out_channels = in_channels | |
| def forward(self, x): | |
| B, C, H, W = x.shape | |
| assert H == 1 | |
| x = x.squeeze(axis=2) | |
| x = x.transpose([0, 2, 1]) # (NTC)(batch, width, channels) | |
| return x | |
| class EncoderWithRNN(nn.Layer): | |
| def __init__(self, in_channels, hidden_size): | |
| super(EncoderWithRNN, self).__init__() | |
| self.out_channels = hidden_size * 2 | |
| self.lstm = nn.LSTM( | |
| in_channels, hidden_size, direction='bidirectional', num_layers=2) | |
| def forward(self, x): | |
| x, _ = self.lstm(x) | |
| return x | |
| class BidirectionalLSTM(nn.Layer): | |
| def __init__(self, | |
| input_size, | |
| hidden_size, | |
| output_size=None, | |
| num_layers=1, | |
| dropout=0, | |
| direction=False, | |
| time_major=False, | |
| with_linear=False): | |
| super(BidirectionalLSTM, self).__init__() | |
| self.with_linear = with_linear | |
| self.rnn = nn.LSTM( | |
| input_size, | |
| hidden_size, | |
| num_layers=num_layers, | |
| dropout=dropout, | |
| direction=direction, | |
| time_major=time_major) | |
| # text recognition the specified structure LSTM with linear | |
| if self.with_linear: | |
| self.linear = nn.Linear(hidden_size * 2, output_size) | |
| def forward(self, input_feature): | |
| recurrent, _ = self.rnn( | |
| input_feature | |
| ) # batch_size x T x input_size -> batch_size x T x (2*hidden_size) | |
| if self.with_linear: | |
| output = self.linear(recurrent) # batch_size x T x output_size | |
| return output | |
| return recurrent | |
| class EncoderWithCascadeRNN(nn.Layer): | |
| def __init__(self, | |
| in_channels, | |
| hidden_size, | |
| out_channels, | |
| num_layers=2, | |
| with_linear=False): | |
| super(EncoderWithCascadeRNN, self).__init__() | |
| self.out_channels = out_channels[-1] | |
| self.encoder = nn.LayerList([ | |
| BidirectionalLSTM( | |
| in_channels if i == 0 else out_channels[i - 1], | |
| hidden_size, | |
| output_size=out_channels[i], | |
| num_layers=1, | |
| direction='bidirectional', | |
| with_linear=with_linear) for i in range(num_layers) | |
| ]) | |
| def forward(self, x): | |
| for i, l in enumerate(self.encoder): | |
| x = l(x) | |
| return x | |
| class EncoderWithFC(nn.Layer): | |
| def __init__(self, in_channels, hidden_size): | |
| super(EncoderWithFC, self).__init__() | |
| self.out_channels = hidden_size | |
| weight_attr, bias_attr = get_para_bias_attr( | |
| l2_decay=0.00001, k=in_channels) | |
| self.fc = nn.Linear( | |
| in_channels, | |
| hidden_size, | |
| weight_attr=weight_attr, | |
| bias_attr=bias_attr, | |
| name='reduce_encoder_fea') | |
| def forward(self, x): | |
| x = self.fc(x) | |
| return x | |
| class EncoderWithSVTR(nn.Layer): | |
| def __init__( | |
| self, | |
| in_channels, | |
| dims=64, # XS | |
| depth=2, | |
| hidden_dims=120, | |
| use_guide=False, | |
| num_heads=8, | |
| qkv_bias=True, | |
| mlp_ratio=2.0, | |
| drop_rate=0.1, | |
| attn_drop_rate=0.1, | |
| drop_path=0., | |
| kernel_size=[3, 3], | |
| qk_scale=None): | |
| super(EncoderWithSVTR, self).__init__() | |
| self.depth = depth | |
| self.use_guide = use_guide | |
| self.conv1 = ConvBNLayer( | |
| in_channels, | |
| in_channels // 8, | |
| kernel_size=kernel_size, | |
| padding=[kernel_size[0] // 2, kernel_size[1] // 2], | |
| act=nn.Swish) | |
| self.conv2 = ConvBNLayer( | |
| in_channels // 8, hidden_dims, kernel_size=1, act=nn.Swish) | |
| self.svtr_block = nn.LayerList([ | |
| Block( | |
| dim=hidden_dims, | |
| num_heads=num_heads, | |
| mixer='Global', | |
| HW=None, | |
| mlp_ratio=mlp_ratio, | |
| qkv_bias=qkv_bias, | |
| qk_scale=qk_scale, | |
| drop=drop_rate, | |
| act_layer=nn.Swish, | |
| attn_drop=attn_drop_rate, | |
| drop_path=drop_path, | |
| norm_layer='nn.LayerNorm', | |
| epsilon=1e-05, | |
| prenorm=False) for i in range(depth) | |
| ]) | |
| self.norm = nn.LayerNorm(hidden_dims, epsilon=1e-6) | |
| self.conv3 = ConvBNLayer( | |
| hidden_dims, in_channels, kernel_size=1, act=nn.Swish) | |
| # last conv-nxn, the input is concat of input tensor and conv3 output tensor | |
| self.conv4 = ConvBNLayer( | |
| 2 * in_channels, | |
| in_channels // 8, | |
| kernel_size=kernel_size, | |
| padding=[kernel_size[0] // 2, kernel_size[1] // 2], | |
| act=nn.Swish) | |
| self.conv1x1 = ConvBNLayer( | |
| in_channels // 8, dims, kernel_size=1, act=nn.Swish) | |
| self.out_channels = dims | |
| self.apply(self._init_weights) | |
| def _init_weights(self, m): | |
| if isinstance(m, nn.Linear): | |
| trunc_normal_(m.weight) | |
| if isinstance(m, nn.Linear) and m.bias is not None: | |
| zeros_(m.bias) | |
| elif isinstance(m, nn.LayerNorm): | |
| zeros_(m.bias) | |
| ones_(m.weight) | |
| def forward(self, x): | |
| # for use guide | |
| if self.use_guide: | |
| z = x.clone() | |
| z.stop_gradient = True | |
| else: | |
| z = x | |
| # for short cut | |
| h = z | |
| # reduce dim | |
| z = self.conv1(z) | |
| z = self.conv2(z) | |
| # SVTR global block | |
| B, C, H, W = z.shape | |
| z = z.flatten(2).transpose([0, 2, 1]) | |
| for blk in self.svtr_block: | |
| z = blk(z) | |
| z = self.norm(z) | |
| # last stage | |
| z = z.reshape([0, H, W, C]).transpose([0, 3, 1, 2]) | |
| z = self.conv3(z) | |
| z = paddle.concat((h, z), axis=1) | |
| z = self.conv1x1(self.conv4(z)) | |
| return z | |
| class SequenceEncoder(nn.Layer): | |
| def __init__(self, in_channels, encoder_type, hidden_size=48, **kwargs): | |
| super(SequenceEncoder, self).__init__() | |
| self.encoder_reshape = Im2Seq(in_channels) | |
| self.out_channels = self.encoder_reshape.out_channels | |
| self.encoder_type = encoder_type | |
| if encoder_type == 'reshape': | |
| self.only_reshape = True | |
| else: | |
| support_encoder_dict = { | |
| 'reshape': Im2Seq, | |
| 'fc': EncoderWithFC, | |
| 'rnn': EncoderWithRNN, | |
| 'svtr': EncoderWithSVTR, | |
| 'cascadernn': EncoderWithCascadeRNN | |
| } | |
| assert encoder_type in support_encoder_dict, '{} must in {}'.format( | |
| encoder_type, support_encoder_dict.keys()) | |
| if encoder_type == "svtr": | |
| self.encoder = support_encoder_dict[encoder_type]( | |
| self.encoder_reshape.out_channels, **kwargs) | |
| elif encoder_type == 'cascadernn': | |
| self.encoder = support_encoder_dict[encoder_type]( | |
| self.encoder_reshape.out_channels, hidden_size, **kwargs) | |
| else: | |
| self.encoder = support_encoder_dict[encoder_type]( | |
| self.encoder_reshape.out_channels, hidden_size) | |
| self.out_channels = self.encoder.out_channels | |
| self.only_reshape = False | |
| def forward(self, x): | |
| if self.encoder_type != 'svtr': | |
| x = self.encoder_reshape(x) | |
| if not self.only_reshape: | |
| x = self.encoder(x) | |
| return x | |
| else: | |
| x = self.encoder(x) | |
| x = self.encoder_reshape(x) | |
| return x | |