__all__ = ['learn','classify_image','categories','image','label','examples','intf'] from fastai.vision.all import * import gradio as gr # Cell learn = load_learner('handpose.pkl') # Cell categories = ('call', 'dislike', 'fist', 'four', 'like', 'mute', 'ok', 'one', 'palm', 'peace', 'peace_inverted', 'rock', 'stop', 'stop_inverted', 'three', 'three2', 'two_up', 'two_up_inverted') def classify_image(img): pred, idx, probs = learn.predict(img) return dict(zip(categories, map(float, probs))) # Cell image = gr.inputs.Image(shape=(192,192),source='webcam') label = gr.outputs.Label() #examples = ['beyonce-ok.jpg','dalai-lama-one.jpg'] intf = gr.Interface(fn=classify_image, inputs=image, outputs=label) intf.launch(inline=False)