dataprincess commited on
Commit
de83f23
·
verified ·
1 Parent(s): 25f70a1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -47
app.py CHANGED
@@ -38,7 +38,7 @@ def recommend_laptops(age=None, category=None, gender=None, user_id=None, num_re
38
  'Gender': [gender]
39
  })
40
  new_user_data = new_user_data.merge(laptop_df, how='cross')
41
- new_user_data['Predicted_Rating'] = new_user_data.apply(lambda row: model.predict(999, row['Laptop_ID']).est, axis=1)
42
  recommendations = new_user_data.sort_values(by='Predicted_Rating', ascending=False).head(num_recommendations)
43
 
44
  return recommendations
@@ -62,29 +62,15 @@ if user_type == 'New User':
62
  if st.button("Get Recommendations"):
63
  recommendations = recommend_laptops(age=new_user_age, category=new_user_category, gender=new_user_gender)
64
  st.subheader("Top 5 Recommended Laptops:")
65
- for i, row in recommendations.iterrows():
66
- st.subheader(f"{i + 1}. {row['name']} - Price: ₹{row['Price (in Indian Rupees)']}")
67
- st.markdown(f"**Specifications:**\n"
68
- f"Type: {row['Type']}\n"
69
- f"Dedicated Graphic Memory Capacity: {row['Dedicated Graphic Memory Capacity']}\n"
70
- f"Processor Brand: {row['Processor Brand']}\n"
71
- f"SSD: {row['SSD']}\n"
72
- f"RAM (in GB): {row['RAM (in GB)']}\n"
73
- f"Expandable Memory: {row['Expandable Memory']}\n"
74
- f"Operating System: {row['Operating System']}\n"
75
- f"Touchscreen: {row['Touchscreen']}\n"
76
- f"Screen Size (in inch): {row['Screen Size (in inch)']}\n"
77
- f"Weight (in kg): {row['Weight (in kg)']}\n"
78
- f"Refresh Rate: {row['Refresh Rate']}\n"
79
- f"Screen Resolution: {row['screen_resolution']}\n"
80
- f"Company: {row['company']}\n"
81
- f"Storage: {row['Storage']}\n"
82
- f"Processor Name: {row['Processor name']}\n"
83
- f"CPU Ranking: {row['CPU_ranking']}\n"
84
- f"Battery Backup: {row['battery_backup']}\n"
85
- f"GPU Name: {row['gpu name ']}\n"
86
- f"GPU Benchmark: {row['gpu_benchmark']}\n")
87
- st.markdown(f"[Buy Here]({row['link']})")
88
 
89
  # User input for existing users
90
  elif user_type == 'Existing User':
@@ -96,28 +82,14 @@ elif user_type == 'Existing User':
96
  if existing_user_id:
97
  recommendations = recommend_laptops(user_id=int(existing_user_id))
98
  st.subheader(f"Top 5 Recommended Laptops for User {existing_user_id}:")
99
- for i, row in recommendations.iterrows():
100
- st.subheader(f"{i + 1}. {row['name']} - Price: ₹{row['Price (in Indian Rupees)']}")
101
- st.markdown(f"**Specifications:**\n"
102
- f"Type: {row['Type']}\n"
103
- f"Dedicated Graphic Memory Capacity: {row['Dedicated Graphic Memory Capacity']}\n"
104
- f"Processor Brand: {row['Processor Brand']}\n"
105
- f"SSD: {row['SSD']}\n"
106
- f"RAM (in GB): {row['RAM (in GB)']}\n"
107
- f"Expandable Memory: {row['Expandable Memory']}\n"
108
- f"Operating System: {row['Operating System']}\n"
109
- f"Touchscreen: {row['Touchscreen']}\n"
110
- f"Screen Size (in inch): {row['Screen Size (in inch)']}\n"
111
- f"Weight (in kg): {row['Weight (in kg)']}\n"
112
- f"Refresh Rate: {row['Refresh Rate']}\n"
113
- f"Screen Resolution: {row['screen_resolution']}\n"
114
- f"Company: {row['company']}\n"
115
- f"Storage: {row['Storage']}\n"
116
- f"Processor Name: {row['Processor name']}\n"
117
- f"CPU Ranking: {row['CPU_ranking']}\n"
118
- f"Battery Backup: {row['battery_backup']}\n"
119
- f"GPU Name: {row['gpu name ']}\n"
120
- f"GPU Benchmark: {row['gpu_benchmark']}\n")
121
- st.markdown(f"[Buy Here]({row['link']})")
122
  else:
123
  st.warning("Please enter a valid user ID.")
 
38
  'Gender': [gender]
39
  })
40
  new_user_data = new_user_data.merge(laptop_df, how='cross')
41
+ new_user_data['Predicted_Rating'] = new_user_data.apply(lambda row: model.predict(10002, row['Laptop_ID']).est, axis=1)
42
  recommendations = new_user_data.sort_values(by='Predicted_Rating', ascending=False).head(num_recommendations)
43
 
44
  return recommendations
 
62
  if st.button("Get Recommendations"):
63
  recommendations = recommend_laptops(age=new_user_age, category=new_user_category, gender=new_user_gender)
64
  st.subheader("Top 5 Recommended Laptops:")
65
+ # for i, row in recommendations.iterrows():
66
+ recommendations_table = recommendations[['Laptop_Name', 'Price (in Indian Rupees)', 'Type', 'Dedicated Graphic Memory Capacity',
67
+ 'Processor Brand', 'SSD', 'RAM (in GB)', 'RAM Type', 'Expandable Memory',
68
+ 'Operating System', 'Touchscreen', 'Screen Size (in inch)', 'Weight (in kg)',
69
+ 'Refresh Rate', 'screen_resolution', 'company', 'Storage', 'Processor name',
70
+ 'CPU_ranking', 'battery_backup', 'gpu name ', 'gpu_benchmark',
71
+ 'ram_type_tokenized', 'gpu_processor_tokenized', 'link']]
72
+
73
+ st.table(recommendations_table)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74
 
75
  # User input for existing users
76
  elif user_type == 'Existing User':
 
82
  if existing_user_id:
83
  recommendations = recommend_laptops(user_id=int(existing_user_id))
84
  st.subheader(f"Top 5 Recommended Laptops for User {existing_user_id}:")
85
+ # for i, row in recommendations.iterrows():
86
+ recommendations_table = recommendations[['Laptop_Name', 'Price (in Indian Rupees)', 'Type', 'Dedicated Graphic Memory Capacity',
87
+ 'Processor Brand', 'SSD', 'RAM (in GB)', 'RAM Type', 'Expandable Memory',
88
+ 'Operating System', 'Touchscreen', 'Screen Size (in inch)', 'Weight (in kg)',
89
+ 'Refresh Rate', 'screen_resolution', 'company', 'Storage', 'Processor name',
90
+ 'CPU_ranking', 'battery_backup', 'gpu name ', 'gpu_benchmark',
91
+ 'ram_type_tokenized', 'gpu_processor_tokenized', 'link']]
92
+
93
+ st.table(recommendations_table)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94
  else:
95
  st.warning("Please enter a valid user ID.")