|
import pandas as pd |
|
from surprise import Dataset, Reader |
|
|
|
laptop_df = pd.read_csv('laptop_data.csv') |
|
user_df = pd.read_csv('user_data.csv') |
|
|
|
laptop_df = laptop_df.fillna(0) |
|
user_df = user_df.fillna(0) |
|
|
|
|
|
reader = Reader(rating_scale=(1, 5)) |
|
data = Dataset.load_from_df(user_df[['User_ID', 'Laptop_ID', 'Rating']], reader) |
|
|
|
from surprise.model_selection import train_test_split |
|
from surprise import SVD |
|
from surprise import accuracy |
|
|
|
|
|
trainset, testset = train_test_split(data, test_size=0.2, random_state=42) |
|
|
|
|
|
model = SVD() |
|
model.fit(trainset) |
|
|
|
def recommend_laptops(age=None, category=None, gender=None, user_id=None, num_recommendations=5): |
|
if user_id is not None: |
|
|
|
user_ratings = user_interactions[user_interactions['User_ID'] == user_id] |
|
user_unrated_laptops = laptop_df[~laptop_df['Laptop_ID'].isin(user_ratings['Laptop_ID'])] |
|
user_unrated_laptops['Predicted_Rating'] = user_unrated_laptops['Laptop_ID'].apply(lambda x: model.predict(user_id, x).est) |
|
recommendations = user_unrated_laptops.sort_values(by='Predicted_Rating', ascending=False).head(num_recommendations) |
|
else: |
|
|
|
new_user_data = pd.DataFrame({ |
|
'User_ID': [10002], |
|
'Age': [age], |
|
'Category': [category], |
|
'Gender': [gender] |
|
}) |
|
new_user_data = new_user_data.merge(laptop_df, how='cross') |
|
new_user_data['Predicted_Rating'] = new_user_data.apply(lambda row: model.predict(999, row['Laptop_ID']).est, axis=1) |
|
recommendations = new_user_data.sort_values(by='Predicted_Rating', ascending=False).head(num_recommendations) |
|
|
|
return recommendations |
|
|
|
|
|
import streamlit as st |
|
|
|
|
|
st.title("Laptop Recommendation System") |
|
|
|
|
|
user_type = st.radio("Are you a new user or an existing user?", ('New User', 'Existing User')) |
|
|
|
if user_type == 'New User': |
|
|
|
new_user_age = st.slider("Age:", min_value=12, max_value=89, value=25) |
|
new_user_category = st.selectbox("What best describes you:", ['Student', 'Professor', 'Banker', 'Businessman', 'Programmer']) |
|
new_user_gender = st.radio("Gender:", ['Male', 'Female']) |
|
|
|
|
|
if st.button("Get Recommendations"): |
|
recommendations = recommend_laptops(age=new_user_age, category=new_user_category, gender=new_user_gender) |
|
st.subheader("Top 5 Recommended Laptops:") |
|
for i, row in recommendations.iterrows(): |
|
st.subheader(f"{i + 1}. {row['Laptop_Name']} - Price: ₹{row['Price (in Indian Rupees)']}") |
|
st.markdown(f"**Specifications:**\n" |
|
f"Type: {row['Type']}\n", |
|
f"Dedicated Graphic Memory Capacity: {row['Dedicated Graphic Memory Capacity']}\n", |
|
f"Processor Brand: {row['Processor Brand']}\n", |
|
f"SSD: {row['SSD']}\n", |
|
f"RAM (in GB): {row['RAM (in GB)']}\n", |
|
f"Expandable Memory: {row['Expandable Memory']}\n", |
|
f"Operating System: {row['Operating System']}\n", |
|
f"Touchscreen: {row['Touchscreen']}\n", |
|
f"Screen Size (in inch): {row['Screen Size (in inch)']}\n", |
|
f"Weight (in kg): {row['Weight (in kg)']}\n", |
|
f"Refresh Rate: {row['Refresh Rate']}\n", |
|
f"Screen Resolution: {row['screen_resolution']}\n", |
|
f"Company: {row['company']}\n", |
|
f"Storage: {row['Storage']}\n", |
|
f"Processor Name: {row['Processor name']}\n", |
|
f"CPU Ranking: {row['CPU_ranking']}\n", |
|
f"Battery Backup: {row['battery_backup']}\n", |
|
f"GPU Name: {row['gpu name ']}\n", |
|
f"GPU Benchmark: {row['gpu_benchmark']}\n") |
|
st.markdown(f"[Buy Here]({row['link']})") |
|
|
|
|
|
elif user_type == 'Existing User': |
|
|
|
existing_user_id = st.text_input("Enter your user ID:", "") |
|
|
|
|
|
if st.button("Get aptop Recommendations"): |
|
if existing_user_id: |
|
recommendations = recommend_laptops(user_id=int(existing_user_id)) |
|
st.subheader(f"Top 5 Recommended Laptops for User {existing_user_id}:") |
|
for i, row in recommendations.iterrows(): |
|
st.subheader(f"{i + 1}. {row['Laptop_Name']} - Price: ₹{row['Price (in Indian Rupees)']}") |
|
st.markdown(f"**Specifications:**\n" |
|
f"Type: {row['Type']}\n" |
|
f"Dedicated Graphic Memory Capacity: {row['Dedicated Graphic Memory Capacity']}\n" |
|
f"Processor Brand: {row['Processor Brand']}\n" |
|
f"SSD: {row['SSD']}\n" |
|
f"RAM (in GB): {row['RAM (in GB)']}\n" |
|
f"Expandable Memory: {row['Expandable Memory']}\n" |
|
f"Operating System: {row['Operating System']}\n" |
|
f"Touchscreen: {row['Touchscreen']}\n" |
|
f"Screen Size (in inch): {row['Screen Size (in inch)']}\n" |
|
f"Weight (in kg): {row['Weight (in kg)']}\n" |
|
f"Refresh Rate: {row['Refresh Rate']}\n" |
|
f"Screen Resolution: {row['screen_resolution']}\n" |
|
f"Company: {row['company']}\n" |
|
f"Storage: {row['Storage']}\n" |
|
f"Processor Name: {row['Processor name']}\n" |
|
f"CPU Ranking: {row['CPU_ranking']}\n" |
|
f"Battery Backup: {row['battery_backup']}\n" |
|
f"GPU Name: {row['gpu name ']}\n" |
|
f"GPU Benchmark: {row['gpu_benchmark']}\n") |
|
st.markdown(f"[Buy Here]({row['link']})") |
|
else: |
|
st.warning("Please enter a valid user ID.") |
|
|