File size: 4,025 Bytes
60d5c99
b2efd5e
 
ec4765e
b2efd5e
 
 
 
60d5c99
 
e42c9fc
 
 
 
 
 
 
 
 
b2efd5e
 
 
 
e42c9fc
 
 
d32a867
b2efd5e
e42c9fc
 
b2efd5e
e42c9fc
 
 
 
 
 
b2efd5e
e42c9fc
 
 
b2efd5e
e42c9fc
b2efd5e
e42c9fc
 
 
b2efd5e
e42c9fc
 
b2efd5e
e42c9fc
 
 
b2efd5e
e42c9fc
 
b2efd5e
e42c9fc
 
 
b2efd5e
e42c9fc
b2efd5e
 
 
 
 
 
d32a867
 
b2efd5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e42c9fc
 
b2efd5e
 
d32a867
b2efd5e
 
 
e42c9fc
b2efd5e
 
 
 
e42c9fc
 
 
60d5c99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
# Required imports
import json
import time
import os
from sentence_transformers import SentenceTransformer
from pinecone import Pinecone, ServerlessSpec
from groq import Groq
from tqdm.auto import tqdm
import streamlit as st

# Required imports
import json
import time
import os
from sentence_transformers import SentenceTransformer
from pinecone import Pinecone, ServerlessSpec
from groq import Groq
from tqdm.auto import tqdm

# Constants (hardcoded)
FILE_PATH = "anjibot_chunks.json"
BATCH_SIZE = 384
INDEX_NAME = "groq-llama-3-rag"
PINECONE_API_KEY = os.getenv("PINECONE_API_KEY")  # Fixed syntax here
GROQ_API_KEY = os.getenv("GROQ_API_KEY")  # Fixed s
DIMS = 768
encoder = SentenceTransformer('dwzhu/e5-base-4k')

with open(FILE_PATH, 'r') as file:
        data= json.load(file)

pc = Pinecone(api_key=PINECONE_API_KEY)
spec = ServerlessSpec(cloud="aws", region='us-east-1')
existing_indexes = [index_info["name"] for index_info in pc.list_indexes()]
# Check if index already exists; if not, create it
if INDEX_NAME not in existing_indexes:
    pc.create_index(INDEX_NAME, dimension=DIMS, metric='cosine', spec=spec)

    # Wait for the index to be initialized
    while not pc.describe_index(INDEX_NAME).status['ready']:
        time.sleep(1)

index = pc.Index(INDEX_NAME)

for i in tqdm(range(0, len(data['id']), BATCH_SIZE)):
    # Find end of batch
    i_end = min(len(data['id']), i + BATCH_SIZE)

    # Create batch
    batch = {k: v[i:i_end] for k, v in data.items()}

    # Create embeddings
    chunks = [f'{x["title"]}: {x["content"]}' for x in batch["metadata"]]
    embeds = encoder.encode(chunks)

    # Ensure correct length
    assert len(embeds) == (i_end - i)

    # Upsert to Pinecone
    to_upsert = list(zip(batch["id"], embeds, batch["metadata"]))
    index.upsert(vectors=to_upsert)

def get_docs(query: str, top_k: int) -> list[str]:
    xq = encoder.encode(query)
    res = index.query(vector=xq.tolist(), top_k=top_k, include_metadata=True)
    return [x["metadata"]['content'] for x in res["matches"]]

def get_response(query: str, docs: list[str], groq_client: any) -> str:
    system_message = (
        "You are Anjibot, the AI course rep of 400 Level Computer Science department. You are always helpful, jovial, can be sarcastic but still sweet.\n"
        "Provide the answer to class-related queries using\n"
        "context provided below.\n"
        "If you don't the answer to the user's question based on your pretrained knowledge and the context provided, just direct the user to Anji the human course rep.\n"
        "Anji's phone number: 08145170886.\n\n"
        "CONTEXT:\n"
        "\n---\n".join(docs)
        )
    messages = [
        {"role": "system", "content": system_message},
        {"role": "user", "content": query}
    ]

    chat_response = groq_client.chat.completions.create(
        model="llama3-70b-8192",
        messages=messages
    )
    return chat_response.choices[0].message.content



def handle_query(user_query: str):

    # Initialize Groq client
    groq_client = Groq(api_key=GROQ_API_KEY)

    # Get relevant documents
    docs = get_docs(user_query, top_k=5)

    # Generate and return response
    response = get_response(user_query, docs, groq_client)

    for word in response.split():
            yield word + " "
            time.sleep(0.05)

def main():
    st.title("Ask Anjibot 2.0")

    if "messages" not in st.session_state:
        st.session_state.messages = []

    for message in st.session_state.messages:
        with st.chat_message(message["role"]):
            st.markdown(message["content"])

    if prompt := st.chat_input("Ask me anything"):
        st.session_state.messages.append({"role": "user", "content": prompt})
        with st.chat_message("user"):
            st.markdown(prompt)

        with st.chat_message("assistant"):
            response = st.write_stream(handle_query(prompt))
        st.session_state.messages.append({"role": "assistant", "content": response})

if __name__ == "__main__":
    main()