Upload app.py with huggingface_hub
Browse files
app.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import os
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
import wandb
|
6 |
+
from huggingface_hub import HfApi
|
7 |
+
|
8 |
+
TOKEN = os.environ.get("DATACOMP_TOKEN")
|
9 |
+
API = HfApi(token=TOKEN)
|
10 |
+
wandb_api_key = os.environ.get('wandb_api_key')
|
11 |
+
wandb.login(key=wandb_api_key)
|
12 |
+
|
13 |
+
random_num = f"60.0"
|
14 |
+
subset = f"frac-1over8"
|
15 |
+
experiment_name = f"ImageNetTraining60.0-frac-1over8"
|
16 |
+
experiment_repo = f"datacomp/ImageNetTraining60.0-frac-1over8"
|
17 |
+
|
18 |
+
def start_train():
|
19 |
+
os.system("echo '#### pwd'")
|
20 |
+
os.system("pwd")
|
21 |
+
os.system("echo '#### ls'")
|
22 |
+
os.system("ls")
|
23 |
+
# Create a place to put the output.
|
24 |
+
os.system("echo 'Creating results output repository in case it does not exist yet...'")
|
25 |
+
try:
|
26 |
+
API.create_repo(repo_id=f"datacomp/ImageNetTraining60.0-frac-1over8", repo_type="dataset",)
|
27 |
+
os.system(f"echo 'Created results output repository datacomp/ImageNetTraining60.0-frac-1over8'")
|
28 |
+
except:
|
29 |
+
os.system("echo 'Already there; skipping.'")
|
30 |
+
pass
|
31 |
+
os.system("echo 'Beginning processing.'")
|
32 |
+
# Handles CUDA OOM errors.
|
33 |
+
os.system(f"export PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True")
|
34 |
+
os.system("echo 'Okay, trying training.'")
|
35 |
+
os.system(f"cd pytorch-image-models; ./train.sh 4 --dataset hfds/datacomp/imagenet-1k-random-60.0-frac-1over8 --log-wandb --wandb-project ImageNetTraining60.0-frac-1over8 --experiment ImageNetTraining60.0-frac-1over8 --model seresnet34 --sched cosine --epochs 150 --warmup-epochs 5 --lr 0.4 --reprob 0.5 --remode pixel --batch-size 256 --amp -j 4")
|
36 |
+
os.system("echo 'Done'.")
|
37 |
+
os.system("ls")
|
38 |
+
# Upload output to repository
|
39 |
+
os.system("echo 'trying to upload...'")
|
40 |
+
API.upload_folder(folder_path="/app", repo_id=f"datacomp/ImageNetTraining60.0-frac-1over8", repo_type="dataset",)
|
41 |
+
API.pause_space(experiment_repo)
|
42 |
+
|
43 |
+
def run():
|
44 |
+
with gr.Blocks() as app:
|
45 |
+
gr.Markdown(f"Randomization: 60.0")
|
46 |
+
gr.Markdown(f"Subset: frac-1over8")
|
47 |
+
start = gr.Button("Start")
|
48 |
+
start.click(start_train)
|
49 |
+
app.launch(server_name="0.0.0.0", server_port=7860)
|
50 |
+
|
51 |
+
if __name__ == '__main__':
|
52 |
+
run()
|