Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
|
@@ -21,7 +21,6 @@ from langchain.chains import (
|
|
| 21 |
|
| 22 |
import chainlit as cl
|
| 23 |
from chainlit.input_widget import TextInput, Select, Switch, Slider
|
| 24 |
-
from chainlit.types import ThreadDict
|
| 25 |
|
| 26 |
from deep_translator import GoogleTranslator
|
| 27 |
|
|
@@ -144,42 +143,6 @@ async def Search(input, categorie):
|
|
| 144 |
|
| 145 |
results = [sources_text, verbatim_text, sources_offres]
|
| 146 |
return results
|
| 147 |
-
|
| 148 |
-
@cl.step(type="llm")
|
| 149 |
-
async def setup_conversationalChain():
|
| 150 |
-
model = await LLModel()
|
| 151 |
-
retriever = await Retriever(cl.user_session.get("selectRequest"))
|
| 152 |
-
########## Chain with streaming ##########
|
| 153 |
-
message_history = ChatMessageHistory()
|
| 154 |
-
memory = ConversationBufferMemory(memory_key="chat_history",output_key="answer",chat_memory=message_history,return_messages=True)
|
| 155 |
-
|
| 156 |
-
qa = ConversationalRetrievalChain.from_llm(
|
| 157 |
-
model,
|
| 158 |
-
memory=cl.user_session.get("memory"),
|
| 159 |
-
chain_type="stuff",
|
| 160 |
-
return_source_documents=True,
|
| 161 |
-
verbose=False,
|
| 162 |
-
retriever=retriever
|
| 163 |
-
)
|
| 164 |
-
cl.user_session.set("runnable", qa)
|
| 165 |
-
cl.user_session.set("memory", memory)
|
| 166 |
-
|
| 167 |
-
@cl.step(type="tool")
|
| 168 |
-
async def switch(value):
|
| 169 |
-
if value == "Pédagogie durable":
|
| 170 |
-
return "bibliographie-OPP-DGDIN"
|
| 171 |
-
elif value == "Lieux d'apprentissage":
|
| 172 |
-
return "bibliographie-OPP-DGDIN"
|
| 173 |
-
elif value == "Journée de La Pédagogie":
|
| 174 |
-
return "year"
|
| 175 |
-
elif value == "Compétences du CFA Descartes":
|
| 176 |
-
return "skills"
|
| 177 |
-
elif value == "Formations Gustave Eiffel":
|
| 178 |
-
return "OF"
|
| 179 |
-
elif value == "Vidéos paroles de confiné.es":
|
| 180 |
-
return "videosTC"
|
| 181 |
-
elif value == "Offres d'emploi France Travail":
|
| 182 |
-
return "offreST"
|
| 183 |
|
| 184 |
@cl.on_chat_start
|
| 185 |
async def on_chat_start():
|
|
@@ -222,27 +185,23 @@ async def on_chat_start():
|
|
| 222 |
await cl.Message(f"Vous pouvez requêter sur la thématique : {res.get('value')}").send()
|
| 223 |
cl.user_session.set("selectRequest", res.get("name"))
|
| 224 |
|
| 225 |
-
await
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
if message["type"] == "user_message":
|
| 238 |
-
memory.chat_memory.add_user_message(message["output"])
|
| 239 |
-
else:
|
| 240 |
-
memory.chat_memory.add_ai_message(message["output"])
|
| 241 |
-
|
| 242 |
cl.user_session.set("memory", memory)
|
| 243 |
-
|
| 244 |
-
await setup_conversationalChain()
|
| 245 |
-
|
| 246 |
@cl.on_message
|
| 247 |
async def on_message(message: cl.Message):
|
| 248 |
memory = cl.user_session.get("memory")
|
|
|
|
| 21 |
|
| 22 |
import chainlit as cl
|
| 23 |
from chainlit.input_widget import TextInput, Select, Switch, Slider
|
|
|
|
| 24 |
|
| 25 |
from deep_translator import GoogleTranslator
|
| 26 |
|
|
|
|
| 143 |
|
| 144 |
results = [sources_text, verbatim_text, sources_offres]
|
| 145 |
return results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
|
| 147 |
@cl.on_chat_start
|
| 148 |
async def on_chat_start():
|
|
|
|
| 185 |
await cl.Message(f"Vous pouvez requêter sur la thématique : {res.get('value')}").send()
|
| 186 |
cl.user_session.set("selectRequest", res.get("name"))
|
| 187 |
|
| 188 |
+
model = await LLModel()
|
| 189 |
+
retriever = await Retriever(cl.user_session.get("selectRequest"))
|
| 190 |
+
########## Chain with streaming ##########
|
| 191 |
+
message_history = ChatMessageHistory()
|
| 192 |
+
memory = ConversationBufferMemory(memory_key="chat_history",output_key="answer",chat_memory=message_history,return_messages=True)
|
| 193 |
|
| 194 |
+
qa = ConversationalRetrievalChain.from_llm(
|
| 195 |
+
model,
|
| 196 |
+
memory=memory,
|
| 197 |
+
chain_type="stuff",
|
| 198 |
+
return_source_documents=True,
|
| 199 |
+
verbose=False,
|
| 200 |
+
retriever=retriever
|
| 201 |
+
)
|
| 202 |
+
cl.user_session.set("runnable", qa)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
cl.user_session.set("memory", memory)
|
| 204 |
+
|
|
|
|
|
|
|
| 205 |
@cl.on_message
|
| 206 |
async def on_message(message: cl.Message):
|
| 207 |
memory = cl.user_session.get("memory")
|