File size: 57,814 Bytes
b67af4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
import json
import mimetypes
import os
import re
import shutil
import threading
import uuid
from typing import Optional
from loguru import logger
from datetime import datetime

import gradio as gr
from dotenv import load_dotenv
from huggingface_hub import login, HfApi
from smolagents import (
    CodeAgent,
    InferenceClientModel,
    Tool,
    DuckDuckGoSearchTool,
)
from smolagents.agent_types import (
    AgentAudio,
    AgentImage,
    AgentText,
    handle_agent_output_types,
)
from smolagents.gradio_ui import stream_to_gradio

from scripts.text_inspector_tool import TextInspectorTool
from scripts.text_web_browser import (
    ArchiveSearchTool,
    FinderTool,
    FindNextTool,
    PageDownTool,
    PageUpTool,
    SimpleTextBrowser,
    VisitTool,
)
from scripts.visual_qa import visualizer
from scripts.report_generator import HFLinkReportTool
from scripts.hf_tools import (
    HFModelsSearchTool,
    HFModelInfoTool,
    HFDatasetsSearchTool,
    HFDatasetInfoTool,
    HFSpacesSearchTool,
    HFSpaceInfoTool,
    HFUserInfoTool,
    HFCollectionsListTool,
    HFCollectionGetTool,
    HFPaperInfoTool,
    HFPaperReposTool,
    HFDailyPapersTool,
    HFRepoInfoTool,
    HFSiteSearchTool,
)

# web_search = GoogleSearchTool(provider="serper")
web_search = DuckDuckGoSearchTool()

AUTHORIZED_IMPORTS = [
    "requests",
    "zipfile",
    "pandas",
    "numpy",
    "sympy",
    "json",
    "bs4",
    "pubchempy",
    "xml",
    "yahoo_finance",
    "Bio",
    "sklearn",
    "scipy",
    "pydub",
    "PIL",
    "chess",
    "PyPDF2",
    "pptx",
    "torch",
    "datetime",
    "fractions",
    "csv",
    "plotly",
    "plotly.express",
    "plotly.graph_objects",
    "jinja2",
]

load_dotenv(override=True)

# Only login if HF_TOKEN is available and valid in environment
if os.getenv("HF_TOKEN"):
    try:
        login(os.getenv("HF_TOKEN"))
        logger.info("Successfully logged in with HF_TOKEN from environment")
    except Exception as e:
        logger.warning(f"Failed to login with HF_TOKEN from environment: {e}")
        logger.info("You can still use the application by providing a valid API key in the interface")

# Global session storage for independent user sessions
user_sessions = {}
session_lock = threading.Lock()

append_answer_lock = threading.Lock()

# Initialize browser
browser = SimpleTextBrowser(request_kwargs={})

def validate_hf_api_key(api_key: str) -> tuple[bool, str]:
    """Validate Hugging Face API key by making a test request."""
    if not api_key or not api_key.strip():
        return False, "❌ API key cannot be empty"
    
    api_key = api_key.strip()
    
    # Basic format validation
    if not api_key.startswith("hf_"):
        return False, "❌ Invalid API key format. Hugging Face API keys start with 'hf_'"
    
    try:
        # Test the API key by making a simple request
        api = HfApi(token=api_key)
        # Try to get user info to validate the token
        user_info = api.whoami()
        return True, f"✅ API key validated successfully! Welcome, {user_info.get('name', 'User')}!"
    except Exception as e:
        return False, f"❌ Invalid API key: {str(e)}"

def create_model_with_api_key(hf_token: str, model_id: str = None) -> InferenceClientModel:
    """Create a model instance with the provided API key."""
    if not model_id:
        model_id = "Qwen/Qwen2.5-Coder-32B-Instruct"
    
    # Store original token
    original_token = os.environ.get("HF_TOKEN")
    
    try:
        # Set the token in environment for this session
        os.environ["HF_TOKEN"] = hf_token
        
        # Create model without explicit token parameter
        model = InferenceClientModel(
            model_id=model_id,
        )
        
        return model
    finally:
        # Restore original token
        if original_token:
            os.environ["HF_TOKEN"] = original_token
        elif "HF_TOKEN" in os.environ:
            del os.environ["HF_TOKEN"]

def create_tools_with_model(model: InferenceClientModel):
    """Create tools with the provided model."""
    # Verify the model was created correctly
    if model is None:
        raise ValueError("Model is None, cannot create TextInspectorTool")
    
    # Text inspector tool disabled for now (inspect_file_as_text)
    # Reason: model attempted to use it with remote URLs; keep only for local uploads when re-enabled.
    # ti_tool = TextInspectorTool(model, 20000)
    
    # Hugging Face tools (public-only, anonymous)
    hf_tools = [
        HFModelsSearchTool(),
        HFModelInfoTool(),
        HFDatasetsSearchTool(),
        HFDatasetInfoTool(),
        HFSpacesSearchTool(),
        HFSpaceInfoTool(),
        HFUserInfoTool(),
        HFCollectionsListTool(),
        HFCollectionGetTool(),
        HFPaperInfoTool(),
        HFPaperReposTool(),
        HFDailyPapersTool(),
        HFRepoInfoTool(),
        HFSiteSearchTool(),
    ]

    tools = hf_tools + [
        web_search,  # duckduckgo
        VisitTool(browser),
        PageUpTool(browser),
        PageDownTool(browser),
        FinderTool(browser),
        FindNextTool(browser),
        ArchiveSearchTool(browser),
        # ti_tool,  # TextInspectorTool (disabled) — only for uploaded local files; do not use with URLs
    ]
    
    return tools

# Agent creation in a factory function
def create_agent(hf_token: str = None, model_id: str = None, max_steps: int = 10):
    """Creates a fresh agent instance for each session"""
    if not hf_token:
        raise ValueError("A valid Hugging Face API key is required to create an agent.")
    
    logger.info(f"Creating agent with token: {hf_token[:10]}...")
    
    # Use session-specific model with HF_TOKEN
    model = create_model_with_api_key(hf_token, model_id)
    tools = create_tools_with_model(model)
    
    # TextInspectorTool temporarily disabled; skip presence check
    # Previous enforcement kept for reference:
    # has_text_inspector = any(getattr(tool, 'name', '') == 'inspect_file_as_text' for tool in tools)
    # if not has_text_inspector:
    #     raise ValueError("TextInspectorTool not found in tools list")
    
    agent = CodeAgent(
        model=model,
        tools=[visualizer] + tools,
        max_steps=max_steps,
        verbosity_level=1,
        additional_authorized_imports=AUTHORIZED_IMPORTS,
        planning_interval=4,
    )
    
    logger.info("Agent created successfully")
    return agent

def get_user_session(request: gr.Request) -> str:
    """Get or create a unique session ID for the user."""
    if not request:
        logger.warning("No request object, using random session ID")
        return str(uuid.uuid4())
    
    # Try to get session from headers or create new one
    session_id = request.headers.get("x-session-id")
    if not session_id:
        # Use client IP and user agent as a more stable identifier
        client_ip = request.client.host if hasattr(request, 'client') and request.client else "unknown"
        user_agent = request.headers.get("user-agent", "unknown")
        # Create a hash-based session ID for more stability
        import hashlib
        session_hash = hashlib.md5(f"{client_ip}:{user_agent}".encode()).hexdigest()
        session_id = f"session_{session_hash[:8]}"
        logger.info(f"Created stable session ID {session_id} for client {client_ip}")
    
    return session_id

def get_stable_session_id(request: gr.Request) -> str:
    """Get a stable session ID that persists across requests."""
    if not request:
        logger.warning("No request object, using random session ID")
        return f"random_{str(uuid.uuid4())[:8]}"
    
    # Use a combination of client info for more stable sessions
    client_ip = getattr(request.client, 'host', 'unknown') if request.client else 'unknown'
    user_agent = request.headers.get("user-agent", "unknown")
    
    # Add additional uniqueness factors
    accept_language = request.headers.get("accept-language", "unknown")
    accept_encoding = request.headers.get("accept-encoding", "unknown")
    
    # Create a more unique session ID
    import hashlib
    session_data = f"{client_ip}:{user_agent}:{accept_language}:{accept_encoding}"
    session_hash = hashlib.md5(session_data.encode()).hexdigest()
    session_id = f"user_{session_hash[:16]}"
    
    logger.info(f"Generated session ID: {session_id}")
    logger.info(f"Session data: {session_data}")
    
    return session_id

def get_unique_session_id(request: gr.Request) -> str:
    """Get a truly unique session ID for each request."""
    if not request:
        return f"unique_{str(uuid.uuid4())[:8]}"
    
    # Use timestamp + client info for uniqueness
    import time
    timestamp = int(time.time() * 1000)  # milliseconds
    client_ip = getattr(request.client, 'host', 'unknown') if request.client else 'unknown'
    user_agent = request.headers.get("user-agent", "unknown")
    
    # Create a unique session ID
    import hashlib
    session_data = f"{timestamp}:{client_ip}:{user_agent}"
    session_hash = hashlib.md5(session_data.encode()).hexdigest()
    session_id = f"unique_{session_hash[:16]}"
    
    logger.info(f"Generated unique session ID: {session_id}")
    
    return session_id

def get_persistent_session_id(request: gr.Request) -> str:
    """Get a persistent session ID that stays the same for the same client."""
    if not request:
        return f"persistent_{str(uuid.uuid4())[:8]}"
    
    # Use only client info for persistence (no timestamp)
    client_ip = getattr(request.client, 'host', 'unknown') if request.client else 'unknown'
    user_agent = request.headers.get("user-agent", "unknown")
    accept_language = request.headers.get("accept-language", "unknown")
    
    # Create a persistent session ID
    import hashlib
    session_data = f"{client_ip}:{user_agent}:{accept_language}"
    session_hash = hashlib.md5(session_data.encode()).hexdigest()
    session_id = f"persistent_{session_hash[:16]}"
    
    logger.info(f"Generated persistent session ID: {session_id}")
    logger.info(f"Session data: {session_data}")
    
    return session_id

def get_session_data(session_id: str) -> dict:
    """Get session data for a specific user."""
    with session_lock:
        if session_id not in user_sessions:
            user_sessions[session_id] = {
                "hf_token": None,
                "agent": None,
                "max_steps": 10,
                "created_at": datetime.now()
            }
        return user_sessions[session_id]

def clear_session_data(session_id: str):
    """Clear session data for a specific user."""
    with session_lock:
        if session_id in user_sessions:
            # Clear sensitive data
            user_sessions[session_id]["hf_token"] = None
            user_sessions[session_id]["agent"] = None
            logger.info(f"Session {session_id[:8]}... cleared")

def clear_agent_only(session_id: str):
    """Clear only the agent, keeping the API key for convenience."""
    with session_lock:
        if session_id in user_sessions:
            if "agent" in user_sessions[session_id]:
                del user_sessions[session_id]["agent"]
            logger.info(f"Session {session_id[:8]}... agent cleared")



class GradioUI:
    """A one-line interface to launch your agent in Gradio"""

    def __init__(self, file_upload_folder: str | None = None):
        self.file_upload_folder = file_upload_folder
        if self.file_upload_folder is not None:
            if not os.path.exists(file_upload_folder):
                os.mkdir(file_upload_folder)
        # No on-disk report saving; reports are rendered in-app only

    def validate_api_key(self, api_key: str) -> tuple[str, str]:
        """Validate API key and return status message."""
        is_valid, message = validate_hf_api_key(api_key)
        if is_valid:
            return message, "success"
        else:
            return message, "error"

    def interact_with_agent(self, prompt, messages, request: gr.Request):
        """Handle agent interaction with proper session management."""
        # Get unique session ID for this user
        session_id = get_persistent_session_id(request)
        session_data = get_session_data(session_id)
        
        logger.info(f"Processing request for session {session_id}...")
        logger.info(f"Request client: {request.client.host if request and request.client else 'unknown'}")
        logger.info(f"Request user-agent: {request.headers.get('user-agent', 'unknown')[:50] if request else 'unknown'}")
        logger.info(f"All active sessions: {list(user_sessions.keys())}")
        logger.info(f"Session data for {session_id}: {session_data}")
        
        # Check if we have a valid agent for this session
        if not session_data.get("agent"):
            # Check if we have a valid HF_TOKEN in session
            hf_token = session_data.get("hf_token")
            
            # If no token in session, try to get it from .env file
            if not hf_token:
                env_token = os.getenv("HF_TOKEN")
                if env_token:
                    hf_token = env_token
                    session_data["hf_token"] = env_token
                    session_data["max_steps"] = 10  # Default max_steps
                    logger.info(f"Using HF_TOKEN from .env file for session {session_id[:8]}...")
                else:
                    logger.warning(f"No API key found for session {session_id[:8]}...")
                    error_msg = "❌ No API key configured for your session. Please enter your Hugging Face API key in the API Configuration section above and click 'Setup API Key'."
                    messages.append(gr.ChatMessage(role="assistant", content=error_msg))
                    yield messages, "", ""
                    return
            
            logger.info(f"Creating agent for session {session_id[:8]}...")
            
            if hf_token:
                try:
                    max_steps = session_data.get("max_steps", 10)
                    session_data["agent"] = create_agent(hf_token, model_id=os.getenv("MODEL_ID"), max_steps=max_steps)
                    logger.info(f"Agent created successfully for session {session_id[:8]}...")
                except Exception as e:
                    logger.error(f"Failed to create agent for session {session_id[:8]}: {e}")
                    error_msg = f"❌ Failed to create agent with provided API key: {str(e)}"
                    messages.append(gr.ChatMessage(role="assistant", content=error_msg))
                    yield messages, "", ""
                    return
        else:
            logger.info(f"Agent already exists for session {session_id[:8]}...")
        
        # Adding monitoring
        try:
            # log the existence of agent memory
            has_memory = hasattr(session_data["agent"], "memory")
            print(f"Agent has memory: {has_memory}")
            if has_memory:
                print(f"Memory type: {type(session_data['agent'].memory)}")

            # Get current date for the prompt
            from datetime import datetime
            current_date = datetime.now().strftime("%Y-%m-%d")
            
             # Prepare the system prompt (Hugging Search)
            system_prompt = f"""You are Hugging Research, an assistant focused on Hugging Face content (models, datasets, Spaces, users, collections, papers) and related learning/blog/news.

TODAY'S DATE: {current_date}

STYLE
- Warm, collaborative, concise. use second person (you)

ACCESS BOUNDARIES
- Read‑only. Use only public information.
- If a tool indicates 401/403/private/gated, state "no access" and continue with other public sources.

AVAILABLE TOOLS
- web_search, visit, page_up, page_down, find, find_next, archive_search, visualizer
- hf_models_search, hf_model_info, hf_datasets_search, hf_dataset_info, hf_spaces_search, hf_space_info
- hf_user_info, hf_collections_list, hf_collection_get, hf_paper_info, hf_paper_repos, hf_daily_papers
- hf_repo_info, hf_site_search

LINK POLICY (anti‑hallucination)
- Only cite URLs that come directly from tool outputs. Never invent or guess links.
- Prefer official huggingface.co URLs for models/datasets/Spaces/papers.
- For tutorials/blogs/news, prefer huggingface.co when the same content exists there.
- If you need a URL that isn't present, first use a tool (web_search or hf_site_search) to retrieve it, then cite it.

TOOL USAGE POLICY
- You can write compact Python to orchestrate multiple tool calls in one block.
- Never dump large/raw JSON. If using python_interpreter, ensure visible output by printing a short structured summary (<=20 lines) or leaving a final expression; otherwise summarize in natural language.
- Keep parameters minimal: include query and limit; add owner only if asked; use a single pipeline_tag or tags only if explicitly implied; use sort/direction when asked or implied (default downloads/descending; 'trending' allowed).
- Default to limit=10 for searches unless the user explicitly asks for more.
- Use web_search to capture fresh/trending context; use hf_site_search for tutorials/blog/Learn.
- Use only the listed tools; do not call undefined helpers (e.g., visit_page).
 - web_search returns plain text; never json.load or index it. Use it only for keywords or discovering links.
 - hf_* tools return JSON serialized as string; always json.loads(...) before indexing keys like 'results' or 'item'.

STARTING MOVE
- Begin with multiple web_search to capture today‑relevant terms (include "Hugging Face" in the query when helpful). Derive 3–5 keywords and reuse them across hf_* calls.

DECISION RULES
- Prefer hf_* tools for official Hub content. Use derived keywords; do not rely only on date sort.
- Stop calling tools once you have enough signal for a confident, useful answer.

FINAL STEP GUIDANCE
 - Do not call any dashboard/report tool. The app will automatically generate a dashboard from your final answer text for the Report tab. Focus on writing a clean Final Answer with accurate inline links derived from tool outputs.

OUTPUT REQUIREMENTS
- Provide a conversational summary tailored to the user’s goal.
- Structure: brief opening (what we looked for and why), key findings woven into short prose.
- Use inline links to official HF pages for repos and to reputable external sources for tutorials/news.
- Briefly mention at least one relevant item with inline links across these categories when available: models, datasets, Spaces, papers, blogs/docs, repositories, videos, news.

EXAMPLES (GOOD)
# Derive keywords then orchestrate searches
results_web = web_search(query="diffusion models Hugging Face latest")
import json
models = json.loads(hf_models_search(query="semantic search", limit=5)).get("results", [])
ds = json.loads(hf_datasets_search(query="semantic search", limit=5)).get("results", [])
repo = json.loads(hf_model_info(repo_id="sentence-transformers/all-MiniLM-L6-v2")).get("item")
spaces = json.loads(hf_spaces_search(query="whisper transcription", limit=5)).get("results", [])
learn = json.loads(hf_site_search(query="fine-tuning tutorial Hugging Face course", limit=5)).get("results", [])
# Final step: compose the final answer in natural language with inline links.
# The app will build a dashboard automatically from your final answer (no extra tool call needed).
final_answer_text = "We looked at semantic search models and datasets, including https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2 ..."
 
 Now is your turn to answer the user query.
 
User Query: """

            # Combine system prompt with user message
            full_prompt = system_prompt + prompt

            # Extract clean message for display (remove internal context)
            display_message = prompt
            if "[INTERNAL CONTEXT:" in prompt:
                display_message = prompt.split("[INTERNAL CONTEXT:")[0].strip()

            messages.append(gr.ChatMessage(role="user", content=display_message))
            yield messages, "", ""

            logger.info(f"Starting agent interaction for session {session_id[:8]}...")
            latest_assistant_text = ""
            for msg in stream_to_gradio(
                session_data["agent"], task=full_prompt, reset_agent_memory=False
            ):
                # If the message contains an HTML report, just pass it through (no on-disk saving)
                # We render the dashboard in the Report tab below.
                # (Intentionally no file saving)
                messages.append(msg)
                if getattr(msg, "role", None) == "assistant" and isinstance(msg.content, str):
                    latest_assistant_text = msg.content
                yield messages, "", ""
            
            # Clear sensitive data from session after interaction (AUTOMATIC)
            # Note: We clear the agent but keep the API key for convenience
            if "agent" in session_data:
                del session_data["agent"]
            logger.info(f"Session {session_id[:8]}... agent cleared after interaction")
            
            # Build Report tab content
            last_answer = latest_assistant_text or ""
            report_md = ""
            if display_message or last_answer:
                report_md = f"### Prompt\n{display_message}\n\n{last_answer}"
            # Generate report HTML from the final answer
            dashboard_html = ""
            try:
                dashboard_html = HFLinkReportTool().forward(final_answer=last_answer, query=display_message)
            except Exception:
                dashboard_html = ""
            yield messages, report_md, dashboard_html
        except Exception as e:
            logger.error(f"Error in interaction for session {session_id[:8]}: {str(e)}")
            print(f"Error in interaction: {str(e)}")
            error_msg = f"❌ Error during interaction: {str(e)}"
            messages.append(gr.ChatMessage(role="assistant", content=error_msg))
            yield messages, "", ""

    def setup_api_key(self, api_key: str, request: gr.Request) -> str:
        """Setup API key for the user's session."""
        # Get unique session ID for this user
        session_id = get_persistent_session_id(request)
        session_data = get_session_data(session_id)
        
        logger.info(f"Setting up API key for session {session_id}...")
        logger.info(f"Setup request client: {request.client.host if request and request.client else 'unknown'}")
        logger.info(f"Setup request user-agent: {request.headers.get('user-agent', 'unknown')[:50] if request else 'unknown'}")
        logger.info(f"All active sessions before setup: {list(user_sessions.keys())}")
        logger.info(f"Session data before setup: {session_data}")
        
        # Check if API key is provided from interface
        if api_key and api_key.strip():
            # Use the API key from interface
            token_to_use = api_key.strip()
            source = "interface"
        else:
            # Try to use token from .env file
            env_token = os.getenv("HF_TOKEN")
            if env_token:
                token_to_use = env_token
                source = ".env file"
            else:
                return "❌ No API key provided. Please enter your Hugging Face API key or set HF_TOKEN in your .env file."
        
        # Validate the token
        is_valid, message = validate_hf_api_key(token_to_use)
        
        if is_valid:
            # Store HF_TOKEN in session data
            session_data["hf_token"] = token_to_use
            session_data["max_steps"] = 10
            logger.info(f"API key stored in session {session_id[:8]}... from {source}")
            logger.info(f"Max steps set to fixed value: 10")
            
            # Create new agent with the HF_TOKEN and max_steps
            try:
                session_data["agent"] = create_agent(token_to_use, model_id=os.getenv("MODEL_ID"), max_steps=10)
                logger.info(f"Agent created successfully for session {session_id[:8]}...")
                return f"✅ API key from {source} validated and agent created successfully! {message.split('!')[1] if '!' in message else ''}"
            except Exception as e:
                logger.error(f"Failed to create agent for session {session_id[:8]}: {e}")
                return f"❌ Failed to create agent with API key from {source}: {str(e)}"
        else:
            logger.warning(f"Invalid API key for session {session_id[:8]}... from {source}")
            return f"❌ Invalid API key from {source}: {message}"

    def upload_file(
        self,
        file,
        file_uploads_log,
        allowed_file_types=[
            "application/pdf",
            "application/vnd.openxmlformats-officedocument.wordprocessingml.document",
            "text/plain",
        ],
    ):
        """
        Handle file uploads, default allowed types are .pdf, .docx, and .txt
        """
        if file is None:
            return gr.Textbox("No file uploaded", visible=True), file_uploads_log

        try:
            mime_type, _ = mimetypes.guess_type(file.name)
        except Exception as e:
            return gr.Textbox(f"Error: {e}", visible=True), file_uploads_log

        if mime_type not in allowed_file_types:
            return gr.Textbox("File type disallowed", visible=True), file_uploads_log

        # Sanitize file name
        original_name = os.path.basename(file.name)
        sanitized_name = re.sub(
            r"[^\w\-.]", "_", original_name
        )  # Replace any non-alphanumeric, non-dash, or non-dot characters with underscores

        type_to_ext = {}
        for ext, t in mimetypes.types_map.items():
            if t not in type_to_ext:
                type_to_ext[t] = ext

        # Ensure the extension correlates to the mime type
        sanitized_name = sanitized_name.split(".")[:-1]
        sanitized_name.append("" + type_to_ext[mime_type])
        sanitized_name = "".join(sanitized_name)

        # Save the uploaded file to the specified folder
        file_path = os.path.join(
            self.file_upload_folder, os.path.basename(sanitized_name)
        )
        shutil.copy(file.name, file_path)

        return gr.Textbox(
            f"File uploaded: {file_path}", visible=True
        ), file_uploads_log + [file_path]

    def log_user_message(self, text_input, file_uploads_log):
        # Create the user message for display (clean, without file info)
        display_message = text_input
        
        # Create the internal message for the agent (with file context)
        internal_message = text_input
        if len(file_uploads_log) > 0:
            file_names = [os.path.basename(f) for f in file_uploads_log]
            file_paths = [f for f in file_uploads_log]  # Full paths
            # Note: inspect_file_as_text is currently disabled (only for local uploads when re-enabled)
            internal_message += f"\n\n[Uploaded files available: {', '.join(file_names)}. You can reference their content if needed (plain text).]"
        
        return (
            internal_message,  # This goes to the agent (with file context)
            gr.Textbox(
                value="",
                interactive=False,
                placeholder="Please wait while Steps are getting populated",
            ),
            gr.Button(interactive=False),
        )

    def detect_device(self, request: gr.Request):
        # Check whether the user device is a mobile or a computer

        if not request:
            return "Desktop"  # Default to desktop if no request info
        
        # Method 1: Check sec-ch-ua-mobile header (most reliable)
        is_mobile_header = request.headers.get("sec-ch-ua-mobile")
        if is_mobile_header:
            return "Mobile" if "?1" in is_mobile_header else "Desktop"

        # Method 2: Check user-agent string
        user_agent = request.headers.get("user-agent", "").lower()
        mobile_keywords = ["android", "iphone", "ipad", "mobile", "phone", "tablet"]
        
        # More comprehensive mobile detection
        if any(keyword in user_agent for keyword in mobile_keywords):
            return "Mobile"
        
        # Check for mobile-specific patterns
        if "mobile" in user_agent or "android" in user_agent or "iphone" in user_agent:
            return "Mobile"

        # Method 3: Check platform
        platform = request.headers.get("sec-ch-ua-platform", "").lower()
        if platform:
            if platform in ['"android"', '"ios"']:
                return "Mobile"
            elif platform in ['"windows"', '"macos"', '"linux"']:
                return "Desktop"

        # Method 4: Check viewport width (if available)
        viewport_width = request.headers.get("viewport-width")
        if viewport_width:
            try:
                width = int(viewport_width)
                return "Mobile" if width <= 768 else "Desktop"
            except ValueError:
                pass

        # Default case if no clear indicators
        return "Desktop"

    def launch(self, **kwargs):
        # Custom CSS for mobile optimization
        custom_css = """
        @media (max-width: 768px) {
            .gradio-container {
                max-width: 100% !important;
                padding: 10px !important;
            }
            .main {
                padding: 10px !important;
            }
            .chatbot {
                max-height: 60vh !important;
            }
            .textbox {
                font-size: 16px !important; /* Prevents zoom on iOS */
            }
            .button {
                min-height: 44px !important; /* Better touch targets */
            }
        }
        """
        
        with gr.Blocks(theme="ocean", fill_height=True, css=custom_css) as demo:
            # Different layouts for mobile and computer devices
            @gr.render()
            def layout(request: gr.Request):
                device = self.detect_device(request)
                print(f"device - {device}")
                # Render layout with sidebar
                # Prepare logo as data URI for reliable rendering
                try:
                    import base64
                    _logo_src = ""
                    _used = ""
                    for _p in ("assets/images/@image_logo.png", "assets/images/image_logo.png"):
                        if os.path.exists(_p):
                            with open(_p, "rb") as _lf:
                                _b64 = base64.b64encode(_lf.read()).decode("ascii")
                                _logo_src = f"data:image/png;base64,{_b64}"
                                _used = _p
                            break
                    print(f"Logo path used: {_used or 'none'}")
                except Exception as _e:
                    print(f"Logo load error: {_e}")
                    _logo_src = ""
                _logo_img_html = (
                    f'<img src="{_logo_src}" alt="App logo" style="vertical-align: middle; margin-right: 10px; height: 40px; display:inline-block;">'
                    if _logo_src else ""
                )
                if device == "Desktop":
                    with gr.Blocks(
                        fill_height=True,
                    ):
                        file_uploads_log = gr.State([])
                        with gr.Sidebar():
                            # Project title and repository link at the top
                            gr.Markdown(value=f"<h1 style=\"display:flex; align-items:center; gap:10px; margin:0; text-align:left;\">{_logo_img_html}Hugging Research</h1>")
                            gr.Markdown("""<img src=\"https://github.githubassets.com/images/modules/logos_page/GitHub-Mark.png\" width=\"20\" height=\"20\" style=\"display: inline-block; vertical-align: middle; margin-right: 8px;\"> <a href=\"https://github.com/mcdaqc/hugging-research\" target=\"_blank\">Github Repository</a>""")
                            
                            # About section
                            with gr.Accordion("ℹ️ About", open=False):
                                gr.Markdown("""**What it does:**
Hugging Research finds Hugging Face models, datasets, and Spaces with direct links and short summaries.

**Available tools:**
- Hugging Face Hub API endpoints (via hf_* tools) — see [Hub API](https://huggingface.co/docs/hub/en/api)
- Web search + basic navigation (DuckDuckGo `web_search`, `visit`, `page_up/down`, `find`, `archive_search`)

**Model configuration:**
- Default: Qwen/Qwen3-Coder-480B-A35B-Instruct (HF Inference API)
- Optional: Ollama/local via `.env`

**How to use:**
- Enter your Hugging Face API key
- Ask in natural language (e.g., models/datasets/spaces by topic or owner; or “I’m new to LLMs/fine‑tuning—where to start?”)
- Get concise, linked results""")
                            
                            with gr.Group():
                                gr.Markdown("**Your request**", container=True)
                                text_input = gr.Textbox(
                                    lines=3,
                                    label="Your request",
                                    container=False,
                                    placeholder="Enter your prompt here and press Shift+Enter or press the button",
                                )
                                launch_research_btn = gr.Button(
                                    "Run", variant="primary"
                                )

                            # Examples Section
                            with gr.Accordion("💡 Example Prompts", open=False):
                                gr.Markdown("**Click any example below to populate your request field:**")
                                
                                example_btn_1 = gr.Button("Basic: Tiny chatbot", size="sm", variant="secondary")
                                example_btn_2 = gr.Button("Medium: RAG Q&A", size="sm", variant="secondary")
                                example_btn_3 = gr.Button("Advanced: Instr. tuning", size="sm", variant="secondary")
                                
                                # Example button events
                                example_btn_1.click(
                                    lambda: "I want a small chatbot I can run on my laptop. Recommend a few lightweight chat models, a small dialogue dataset to fine‑tune, and a beginner‑friendly finetuning guide. Include a Space I can duplicate or clear steps to run locally.",
                                    None,
                                    [text_input]
                                )
                                example_btn_2.click(
                                    lambda: "I'm building a document Q&A RAG app. Recommend CPU‑friendly embedding models and an optional reranker, give sensible chunk size and overlap defaults, suggest a small starter dataset, link a Space I can duplicate or a repo for an end‑to‑end pipeline, and provide a short guide to evaluate answer quality.",
                                    None,
                                    [text_input]
                                )
                                example_btn_3.click(
                                    lambda: "I'm exploring instruction‑tuning and preference optimization for code LLMs. Surface recent papers from 2024 and 2025 on SFT, DPO, ORPO, and GRPO, link relevant datasets, models and repos that implement these methods, outline typical training and evaluation setups, and highlight open challenges and safety notes.",
                                    None,
                                    [text_input]
                                )

                            # API Key Configuration Section
                            with gr.Accordion("🔑 API Configuration", open=False):
                                gr.Markdown("**Configure your Hugging Face API Key**")
                                gr.Markdown("🔒 **Security**: Your API key is only kept during this session.")
                                gr.Markdown("Get your API key from: https://huggingface.co/settings/tokens")
                                
                                api_key_input = gr.Textbox(
                                    label="Hugging Face API Key",
                                    placeholder="hf_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",
                                    type="password",
                                    lines=1
                                )
                                api_key_status = gr.Textbox(
                                    label="Status",
                                    value="✅ HF_TOKEN found in .env file. To use a different key, enter it above and click 'Setup API Key'." if os.getenv("HF_TOKEN") else "⚠️ Please enter your Hugging Face API key above and click 'Setup API Key' to start using the application.",
                                    interactive=False
                                )
                                
                                # Agent configuration (fixed steps)
                                gr.Markdown("**Agent Configuration** — steps are fixed for stability.")
                                
                                setup_api_btn = gr.Button("Setup API Key", variant="secondary")

                            # If an upload folder is provided, enable the upload feature
                            # COMMENTED: File upload feature temporarily disabled - works but consumes too many steps for parsing
                            # TODO: Re-enable after optimizing TextInspectorTool to use fewer steps
                            # if self.file_upload_folder is not None:
                            #     upload_file = gr.File(label="Upload a file")
                            #     upload_status = gr.Textbox(
                            #         label="Upload Status",
                            #         interactive=False,
                            #         visible=False,
                            #     )
                            #     upload_file.change(
                            #         self.upload_file,
                            #         [upload_file, file_uploads_log],
                            #         [upload_status, file_uploads_log],
                            #     )

                            # Powered by smolagents
                            with gr.Row():
                                gr.HTML("""<div style="display: flex; align-items: center; gap: 8px; font-family: system-ui, -apple-system, sans-serif;">Powered by
                        <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png" style="width: 32px; height: 32px; object-fit: contain;" alt="logo">
                        <a target="_blank" href="https://github.com/huggingface/smolagents"><b>hf/smolagents</b></a>
                        </div>""")

                        # Chat interface
                        stored_messages = gr.State([])
                        chatbot = gr.Chatbot(
                            label="open-Deep-Research",
                            type="messages",
                            avatar_images=(
                                None,
                                "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png",
                            ),
                            resizeable=False,
                            scale=1,
                            elem_id="my-chatbot",
                        )

                        # Tabs for Research and Report
                        with gr.Tabs():
                            with gr.Tab("Report"):
                                report_markdown = gr.Markdown(value="")
                                report_dashboard = gr.HTML(value="")

                        # API Key setup event
                        setup_api_btn.click(
                            self.setup_api_key,
                            [api_key_input],
                            [api_key_status]
                        )
                        


                        text_input.submit(
                            self.log_user_message,
                            [text_input, file_uploads_log],
                            [stored_messages, text_input, launch_research_btn],
                        ).then(
                            self.interact_with_agent,
                            [stored_messages, chatbot],
                            [chatbot, report_markdown, report_dashboard],
                        ).then(
                            lambda: (
                                gr.Textbox(
                                    interactive=True,
                                    placeholder="Enter your prompt here and press the button",
                                ),
                                gr.Button(interactive=True),
                            ),
                            None,
                            [text_input, launch_research_btn],
                        )
                        launch_research_btn.click(
                            self.log_user_message,
                            [text_input, file_uploads_log],
                            [stored_messages, text_input, launch_research_btn],
                        ).then(
                            self.interact_with_agent,
                            [stored_messages, chatbot],
                            [chatbot, report_markdown, report_dashboard],
                        ).then(
                            lambda: (
                                gr.Textbox(
                                    interactive=True,
                                    placeholder="Enter your prompt here and press the button",
                                ),
                                gr.Button(interactive=True),
                            ),
                            None,
                            [text_input, launch_research_btn],
                        )

                # Render simple layout for mobile
                else:
                    try:
                        with gr.Blocks(
                            fill_height=True,
                        ):
                            # Project title and repository link at the top
                            gr.Markdown(value=f"<h1 style=\"display:flex; align-items:center; gap:10px; margin:0; text-align:left;\">{_logo_img_html}Hugging Research</h1>")
                            gr.Markdown("""<img src=\"https://github.githubassets.com/images/modules/logos_page/GitHub-Mark.png\" width=\"20\" height=\"20\" style=\"display: inline-block; vertical-align: middle; margin-right: 8px;\"> <a href=\"https://github.com/mcdaqc/hugging-research\" target=\"_blank\">Github Repository</a>""")
                            
                            # About section for mobile
                            with gr.Accordion("ℹ️ About", open=False):
                                gr.Markdown("""**What it does:**
Hugging Research finds Hugging Face models, datasets, and Spaces with direct links and short summaries.

**Available tools:**
- Hugging Face Hub API endpoints (via hf_* tools) — see [Hub API](https://huggingface.co/docs/hub/en/api)
- Web search + basic navigation (DuckDuckGo `web_search`, `visit`, `page_up/down`, `find`, `archive_search`)

**Model configuration:**
- Default: Qwen/Qwen3-Coder-480B-A35B-Instruct (HF Inference API)
- Optional: Ollama/local via `.env`

**How to use:**
- Enter your Hugging Face API key
- Ask in natural language (e.g., models/datasets/spaces by topic or owner; or “I’m new to LLMs/fine‑tuning—where to start?”)
- Get concise, linked results""")

                        # API Key Configuration Section for Mobile
                        with gr.Accordion("🔑 API Configuration", open=False):
                            gr.Markdown("**Configure your Hugging Face API Key**")
                            gr.Markdown("🔒 **Security**: Your API key is only kept during this session.")
                            gr.Markdown("Get your API key from: https://huggingface.co/settings/tokens")
                            
                            mobile_api_key_input = gr.Textbox(
                                label="Hugging Face API Key",
                                placeholder="hf_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",
                                type="password",
                                lines=1
                            )
                            mobile_api_key_status = gr.Textbox(
                                label="Status",
                                value="✅ HF_TOKEN found in .env file. To use a different key, enter it above and click 'Setup API Key'." if os.getenv("HF_TOKEN") else "⚠️ Please enter your Hugging Face API key above and click 'Setup API Key' to start using the application.",
                                interactive=False
                            )
                            
                            # Agent configuration for mobile
                            gr.Markdown("**Agent Configuration**")
                            mobile_max_steps_slider = gr.Slider(
                                minimum=5,
                                maximum=30,
                                value=10,
                                step=1,
                                label="Maximum Steps",
                                info="Number of steps the agent can take per session (higher = more detailed but slower)"
                            )
                            
                            mobile_setup_api_btn = gr.Button("Setup API Key", variant="secondary")
                        
                        # Chat interface for mobile
                        stored_messages = gr.State([])
                        file_uploads_log = gr.State([])
                        chatbot = gr.Chatbot(
                            label="open-Deep-Research",
                            type="messages",
                            avatar_images=(
                                None,
                                "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png",
                            ),
                            resizeable=True,
                            scale=1,
                        )
                        
                        # Input section for mobile
                        text_input = gr.Textbox(
                            lines=1,
                            label="Your request",
                            placeholder="Enter your prompt here and press the button",
                        )
                        launch_research_btn = gr.Button(
                            "Run",
                            variant="primary",
                        )

                        # File upload section for mobile (simple)
                        # COMMENTED: File upload feature temporarily disabled - works but consumes too many steps for parsing
                        # TODO: Re-enable after optimizing
                        # if self.file_upload_folder is not None:
                        #     mobile_upload_file = gr.File(label="📎 Upload PDF/TXT file (optional)")
                        #     mobile_upload_status = gr.Textbox(
                        #         label="Upload Status",
                        #         interactive=False,
                        #         visible=False,
                        #     )
                        #     mobile_upload_file.change(
                        #         self.upload_file,
                        #         [mobile_upload_file, file_uploads_log],
                        #         [mobile_upload_status, file_uploads_log],
                        #     )

                        # Examples Section for Mobile
                        with gr.Accordion("💡 Example Prompts", open=False):
                            gr.Markdown("**Click any example below to populate your request field:**")
                            
                            mobile_example_btn_1 = gr.Button("Basic: Tiny chatbot", size="sm", variant="secondary")
                            mobile_example_btn_2 = gr.Button("Medium: RAG Q&A", size="sm", variant="secondary")
                            mobile_example_btn_3 = gr.Button("Advanced: Instr. tuning", size="sm", variant="secondary")
                        
                        # Powered by smolagents for mobile
                        with gr.Row():
                            gr.HTML("""<div style="display: flex; align-items: center; gap: 8px; font-family: system-ui, -apple-system, sans-serif;">Powered by
                        <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png" style="width: 32px; height: 32px; object-fit: contain;" alt="logo">
                        <a target="_blank" href="https://github.com/huggingface/smolagents"><b>hf/smolagents</b></a>
                        </div>""")

                        # Mobile API Key setup event
                        mobile_setup_api_btn.click(
                            self.setup_api_key,
                            [mobile_api_key_input],
                            [mobile_api_key_status]
                        )
                        
                        # Mobile Example button events
                        mobile_example_btn_1.click(
                            lambda: "I want a small chatbot I can run on my laptop. Recommend a few lightweight chat models, a small dialogue dataset to fine‑tune, and a beginner‑friendly finetuning guide. Include a Space I can duplicate or clear steps to run locally.",
                            None,
                            [text_input]
                        )
                        mobile_example_btn_2.click(
                            lambda: "I'm building a document Q&A RAG app. Recommend CPU‑friendly embedding models and an optional reranker, give sensible chunk size and overlap defaults, suggest a small starter dataset, link a Space I can duplicate or a repo for an end‑to‑end pipeline, and provide a short guide to evaluate answer quality.",
                            None,
                            [text_input]
                        )
                        mobile_example_btn_3.click(
                            lambda: "I'm exploring instruction‑tuning and preference optimization for code LLMs. Surface recent papers from 2024 and 2025 on SFT, DPO, ORPO, and GRPO, link relevant datasets, models and repos that implement these methods, outline typical training and evaluation setups, and highlight open challenges and safety notes.",
                            None,
                            [text_input]
                        )

                        # Research and Report panels for mobile
                        with gr.Tabs():
                            with gr.Tab("Report"):
                                m_report_markdown = gr.Markdown(value="")
                                m_report_dashboard = gr.HTML(value="")

                        # Mobile chat events
                        text_input.submit(
                            self.log_user_message,
                            [text_input, file_uploads_log],
                            [stored_messages, text_input, launch_research_btn],
                        ).then(
                            self.interact_with_agent,
                            [stored_messages, chatbot],
                            [chatbot, m_report_markdown, m_report_dashboard],
                        ).then(
                            lambda: (
                                gr.Textbox(
                                    interactive=True,
                                    placeholder="Enter your prompt here and press the button",
                                ),
                                gr.Button(interactive=True),
                            ),
                            None,
                            [text_input, launch_research_btn],
                        )
                        launch_research_btn.click(
                            self.log_user_message,
                            [text_input, file_uploads_log],
                            [stored_messages, text_input, launch_research_btn],
                        ).then(
                            self.interact_with_agent,
                            [stored_messages, chatbot],
                            [chatbot, m_report_markdown, m_report_dashboard],
                        ).then(
                            lambda: (
                                gr.Textbox(
                                    interactive=True,
                                    placeholder="Enter your prompt here and press the button",
                                ),
                                gr.Button(interactive=True),
                            ),
                            None,
                            [text_input, launch_research_btn],
                        )
                    except Exception as e:
                        # Fallback to desktop layout if mobile layout fails
                        logger.error(f"Mobile layout failed: {e}")
                        # Re-render desktop layout as fallback
                        with gr.Blocks(fill_height=True):
                            gr.Markdown(value=f"<h1 style=\"display:flex; align-items:center; gap:10px; margin:0; text-align:left;\">{_logo_img_html}Hugging Research</h1>")
                            gr.Markdown("""<img src=\"https://github.githubassets.com/images/modules/logos_page/GitHub-Mark.png\" width=\"20\" height=\"20\" style=\"display: inline-block; vertical-align: middle; margin-right: 8px;\"> <a href=\"https://github.com/mcdaqc/hugging-research\" target=\"_blank\">Github Repository</a>""")
                            gr.Markdown("⚠️ Mobile layout failed, using desktop layout as fallback.")
                            
                            # Simple fallback interface
                            stored_messages = gr.State([])
                            file_uploads_log = gr.State([])
                            chatbot = gr.Chatbot(
                                label="open-Deep-Research",
                                type="messages",
                                avatar_images=(
                                    None,
                                    "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png",
                                ),
                            )
                            with gr.Tabs():
                                with gr.Tab("Report"):
                                    fb_report_markdown = gr.Markdown(value="")
                                    fb_report_dashboard = gr.HTML(value="")
                            
                            text_input = gr.Textbox(
                                lines=1,
                                label="Your request",
                                placeholder="Enter your prompt here and press the button",
                            )
                            launch_research_btn = gr.Button("Run", variant="primary")
                            
                            # Fallback events
                            text_input.submit(
                                self.log_user_message,
                                [text_input, file_uploads_log],
                                [stored_messages, text_input, launch_research_btn],
                            ).then(
                                self.interact_with_agent,
                                [stored_messages, chatbot],
                                [chatbot, fb_report_markdown, fb_report_dashboard],
                            )
                            launch_research_btn.click(
                                self.log_user_message,
                                [text_input, file_uploads_log],
                                [stored_messages, text_input, launch_research_btn],
                            ).then(
                                self.interact_with_agent,
                                [stored_messages, chatbot],
                                [chatbot, fb_report_markdown, fb_report_dashboard],
                            )

        
        # Configure for Hugging Face Spaces compatibility
        is_spaces = os.getenv("SPACE_ID") is not None
        
        if is_spaces:
            # Hugging Face Spaces configuration
            demo.launch(
                debug=False,
                server_name="0.0.0.0",
                server_port=int(os.getenv("PORT", 7860)),
                share=True,
                **kwargs
            )
        else:
            # Local development configuration
            demo.launch(
                debug=True,
                server_name="localhost",
                server_port=7860,
                share=False,
                **kwargs
            )

# Launch the application
if __name__ == "__main__":
    try:
        GradioUI(file_upload_folder="uploads").launch()
    except KeyboardInterrupt:
        print("Application stopped by user")
    except Exception as e:
        print(f"Error starting application: {e}")
        raise