Spaces:
Runtime error
Runtime error
| from transformers import DistilBertForQuestionAnswering, DistilBertConfig, DistilBertTokenizerFast | |
| import torch | |
| model = DistilBertForQuestionAnswering(DistilBertConfig.from_pretrained('distilbert/distilbert-base-multilingual-cased')).to("cpu") | |
| st_dict = torch.load("QazDistilBERT.pt") | |
| model.load_state_dict(st_dict,map_location=torch.device('cpu')) | |
| tokenizer = DistilBertTokenizerFast.from_pretrained("dappyx/QazDistilbertFast-tokenizerV3") | |
| import gradio as gr | |
| def qa_pipeline(text,question): | |
| inputs = tokenizer(question, text, return_tensors="pt") | |
| input_ids = inputs['input_ids'].to("cpu") | |
| attention_mask = inputs['attention_mask'].to("cpu") | |
| outputs = model(input_ids=input_ids,attention_mask=attention_mask) | |
| start_index = torch.argmax(outputs.start_logits, dim=-1).item() | |
| end_index = torch.argmax(outputs.end_logits, dim=-1).item() | |
| predict_answer_tokens = inputs.input_ids[0, start_index : end_index + 1] | |
| return tokenizer.decode(predict_answer_tokens) | |
| def answer_question(context, question): | |
| result = qa_pipeline(context, question) | |
| return result | |
| # Создаем интерфейс | |
| iface = gr.Interface( | |
| fn=answer_question, | |
| inputs=[ | |
| gr.Textbox(lines=10, label="Context"), | |
| gr.Textbox(lines=2, label="Question") | |
| ], | |
| outputs="text", | |
| title="Question Answering Model", | |
| description="Введите контекст и задайте вопрос, чтобы получить ответ." | |
| ) | |
| # Запускаем интерфейс | |
| iface.launch() | |