danrdoran commited on
Commit
7060a0b
·
verified ·
1 Parent(s): 635badb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -12
app.py CHANGED
@@ -1,7 +1,6 @@
1
- import streamlit as st
2
  from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer
3
 
4
- # Load the model with the `ignore_mismatched_sizes=True` flag
5
  model = AutoModelForSeq2SeqLM.from_pretrained(
6
  "danrdoran/flan-t5-grammar-correction-simplified-squad",
7
  ignore_mismatched_sizes=True
@@ -9,9 +8,15 @@ model = AutoModelForSeq2SeqLM.from_pretrained(
9
  tokenizer = AutoTokenizer.from_pretrained("danrdoran/flan-t5-grammar-correction-simplified-squad")
10
 
11
  # Set up the Hugging Face pipeline for text2text-generation task
12
- model_pipeline = pipeline("text2text-generation", model=model, tokenizer=tokenizer)
 
 
 
 
13
 
14
  # Streamlit app UI
 
 
15
  st.title("AI English Tutor")
16
  st.write("Ask me a question or give me a sentence, and I will help you.")
17
 
@@ -27,18 +32,16 @@ student_question = st.text_input("Ask your question!")
27
 
28
  # Generate and display response using the Hugging Face model
29
  if student_question:
30
- # Adjust prompt to ask for complete sentences
31
  prompt = f"Answer the following question in complete sentences: '{student_question}'"
32
-
33
  # Call the pipeline with adjusted parameters
34
  response = model_pipeline(
35
- prompt,
36
- #max_length=150, # Adjust this based on how long you'd want the responses
37
- #min_length=50, # Encourage longer responses
38
- temperature=temperature, # Control randomness
39
- top_p=top_p, # Nucleus sampling
40
- top_k=top_k, # Top-k sampling
41
- do_sample=do_sample # Enable or disable sampling
42
  )
43
 
44
  st.write("Tutor's Answer:", response[0]['generated_text'])
 
 
1
  from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer
2
 
3
+ # Load the model and tokenizer with the ignore_mismatched_sizes parameter
4
  model = AutoModelForSeq2SeqLM.from_pretrained(
5
  "danrdoran/flan-t5-grammar-correction-simplified-squad",
6
  ignore_mismatched_sizes=True
 
8
  tokenizer = AutoTokenizer.from_pretrained("danrdoran/flan-t5-grammar-correction-simplified-squad")
9
 
10
  # Set up the Hugging Face pipeline for text2text-generation task
11
+ model_pipeline = pipeline(
12
+ "text2text-generation",
13
+ model=model,
14
+ tokenizer=tokenizer
15
+ )
16
 
17
  # Streamlit app UI
18
+ import streamlit as st
19
+
20
  st.title("AI English Tutor")
21
  st.write("Ask me a question or give me a sentence, and I will help you.")
22
 
 
32
 
33
  # Generate and display response using the Hugging Face model
34
  if student_question:
 
35
  prompt = f"Answer the following question in complete sentences: '{student_question}'"
36
+
37
  # Call the pipeline with adjusted parameters
38
  response = model_pipeline(
39
+ prompt,
40
+ temperature=temperature,
41
+ top_p=top_p,
42
+ top_k=top_k,
43
+ do_sample=do_sample,
44
+ decoder_start_token_id=tokenizer.pad_token_id # Add the required decoder_start_token_id
 
45
  )
46
 
47
  st.write("Tutor's Answer:", response[0]['generated_text'])