import streamlit as st from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM import os from huggingface_hub import login # Retrieve the token from environment variable hf_token = os.getenv("TUTOR_LLAMA") login(token=hf_token) # Load LLaMA model and tokenizer for Arabic and ESL tutoring model_name = "meta-llama/Llama-3.2-1B" # Adjust to the LLaMA model you're using tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # Set up the Hugging Face pipeline for text-generation task with LLaMA model model_pipeline = pipeline( "text-generation", model=model, tokenizer=tokenizer, device=-1 # Ensure it runs on CPU (adjust if using GPU) ) # Streamlit app UI st.title("AI Arabic and ESL Tutor") st.write("Ask me a question in English or Arabic, and I will help you.") # Sidebar for user to control model generation parameters st.sidebar.title("Model Parameters") temperature = st.sidebar.slider("Temperature", 0.1, 1.5, 1.0, 0.1) # Default 1.0 top_p = st.sidebar.slider("Top-p (Nucleus Sampling)", 0.0, 1.0, 0.9, 0.05) # Default 0.9 top_k = st.sidebar.slider("Top-k", 0, 100, 50, 1) # Default 50 do_sample = st.sidebar.checkbox("Enable Random Sampling", value=True) # Enable sampling # Input field for the student student_question = st.text_input("Ask your question in English or Arabic!") # Function to generate response with post-processing def generate_response(prompt, max_length=75): # Generate the model's response response = model_pipeline( prompt, max_length=max_length, temperature=temperature, top_p=top_p, top_k=top_k, do_sample=do_sample ) # Extract the generated text and remove the prompt (if necessary) generated_text = response[0]['generated_text'] # Find the first instance of the actual generated answer (post-prompt) cleaned_text = generated_text.replace(prompt, "").strip() return cleaned_text # Generate and display response using the LLaMA model if student_question: # Format the prompt to guide the model to respond conversationally and concisely prompt = f"Q: {student_question}\nA: Explain it simply to a young student in no more than 3 sentences." # Call the function to generate and clean the response answer = generate_response(prompt) st.write("Tutor's Answer:", answer)