import streamlit as st from transformers import pipeline, AutoTokenizer, T5ForConditionalGeneration # Load FLAN-T5-base model and tokenizer for Arabic and ESL tutoring model_name = "google/flan-t5-large" tokenizer = AutoTokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) # Set up the Hugging Face pipeline for text-to-text generation model_pipeline = pipeline( "text2text-generation", # Using the correct task for FLAN-T5 model=model, tokenizer=tokenizer, device=-1 # Ensure it runs on CPU (adjust if using GPU) ) # Streamlit app UI st.title("AI Arabic and ESL Tutor") st.write("Ask me a question in English or Arabic, and I will help you.") # Sidebar for user to control model generation parameters st.sidebar.title("Model Parameters") temperature = st.sidebar.slider("Temperature", 0.1, 1.5, 1.0, 0.1) # Default 1.0 top_p = st.sidebar.slider("Top-p (Nucleus Sampling)", 0.0, 1.0, 0.9, 0.05) # Default 0.9 top_k = st.sidebar.slider("Top-k", 0, 100, 50, 1) # Default 50 do_sample = st.sidebar.checkbox("Enable Random Sampling", value=True) # Enable sampling # Input field for the student student_question = st.text_input("Ask your question in English or Arabic!") # Generate and display response using the FLAN-T5 model if student_question: # Adjust prompt to encourage student-friendly responses prompt = f"Q: {student_question}\nA: Explain it simply to a young student in no more than 3 sentences." # Call the pipeline with adjusted parameters response = model_pipeline( prompt, max_length=75, # Adjust this based on desired response length temperature=temperature, # Control randomness top_p=top_p, # Nucleus sampling top_k=top_k, # Top-k sampling do_sample=do_sample # Enable or disable sampling ) st.write("Tutor's Answer:", response[0]['generated_text'])