Spaces:
Runtime error
Runtime error
Commit
·
1b8bd99
1
Parent(s):
1b96396
Added a Model file
Browse files
Model.py
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
|
| 4 |
+
# Neural Network
|
| 5 |
+
class LeNet(nn.Module):
|
| 6 |
+
def __init__(self):
|
| 7 |
+
super(LeNet, self).__init__()
|
| 8 |
+
|
| 9 |
+
self.convs = nn.Sequential(
|
| 10 |
+
nn.Conv2d(in_channels=1, out_channels=4, kernel_size=(5, 5)),
|
| 11 |
+
nn.Tanh(),
|
| 12 |
+
nn.AvgPool2d(2, 2),
|
| 13 |
+
|
| 14 |
+
nn.Conv2d(in_channels=4, out_channels=12, kernel_size=(5, 5)),
|
| 15 |
+
nn.Tanh(),
|
| 16 |
+
nn.AvgPool2d(2, 2)
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
self.linear = nn.Sequential(
|
| 20 |
+
nn.Linear(4*4*12,10)
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
def forward(self, x):
|
| 24 |
+
x = self.convs(x)
|
| 25 |
+
x = torch.flatten(x, 1)
|
| 26 |
+
|
| 27 |
+
return self.linear(x)
|
app.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
-
from
|
| 4 |
|
| 5 |
labels = ['Zero','Um','Dois','Três','Quatro','Cinco','Seis','Sete','Oito', 'Nove']
|
| 6 |
|
|
@@ -13,30 +13,6 @@ else:
|
|
| 13 |
print("CPU")
|
| 14 |
|
| 15 |
|
| 16 |
-
# Neural Network
|
| 17 |
-
class LeNet(nn.Module):
|
| 18 |
-
def __init__(self):
|
| 19 |
-
super(LeNet, self).__init__()
|
| 20 |
-
|
| 21 |
-
self.convs = nn.Sequential(
|
| 22 |
-
nn.Conv2d(in_channels=1, out_channels=4, kernel_size=(5, 5)),
|
| 23 |
-
nn.Tanh(),
|
| 24 |
-
nn.AvgPool2d(2, 2),
|
| 25 |
-
|
| 26 |
-
nn.Conv2d(in_channels=4, out_channels=12, kernel_size=(5, 5)),
|
| 27 |
-
nn.Tanh(),
|
| 28 |
-
nn.AvgPool2d(2, 2)
|
| 29 |
-
)
|
| 30 |
-
|
| 31 |
-
self.linear = nn.Sequential(
|
| 32 |
-
nn.Linear(4*4*12,10)
|
| 33 |
-
)
|
| 34 |
-
|
| 35 |
-
def forward(self, x):
|
| 36 |
-
x = self.convs(x)
|
| 37 |
-
x = torch.flatten(x, 1)
|
| 38 |
-
|
| 39 |
-
return self.linear(x)
|
| 40 |
|
| 41 |
# Loading model
|
| 42 |
model = LeNet().to(device)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
+
from Model import LeNet
|
| 4 |
|
| 5 |
labels = ['Zero','Um','Dois','Três','Quatro','Cinco','Seis','Sete','Oito', 'Nove']
|
| 6 |
|
|
|
|
| 13 |
print("CPU")
|
| 14 |
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
# Loading model
|
| 18 |
model = LeNet().to(device)
|