Spaces:
Running
on
Zero
Running
on
Zero
Test diffusers
Browse files
app.py
CHANGED
|
@@ -9,9 +9,23 @@ from http import HTTPStatus
|
|
| 9 |
from urllib.parse import urlparse, unquote
|
| 10 |
from pathlib import PurePosixPath
|
| 11 |
import requests
|
| 12 |
-
from dashscope import ImageSynthesis
|
| 13 |
import os
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
MAX_SEED = np.iinfo(np.int32).max
|
| 16 |
MAX_IMAGE_SIZE = 1440
|
| 17 |
|
|
@@ -31,6 +45,37 @@ def get_image_size(aspect_ratio):
|
|
| 31 |
else:
|
| 32 |
return 1328, 1328
|
| 33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
@spaces.GPU(duration=65)
|
| 35 |
def infer(
|
| 36 |
prompt,
|
|
@@ -159,7 +204,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 159 |
gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=False, cache_mode="lazy")
|
| 160 |
gr.on(
|
| 161 |
triggers=[run_button.click, prompt.submit],
|
| 162 |
-
fn=
|
| 163 |
inputs=[
|
| 164 |
prompt,
|
| 165 |
negative_prompt,
|
|
|
|
| 9 |
from urllib.parse import urlparse, unquote
|
| 10 |
from pathlib import PurePosixPath
|
| 11 |
import requests
|
|
|
|
| 12 |
import os
|
| 13 |
|
| 14 |
+
from diffusers import DiffusionPipeline
|
| 15 |
+
import torch
|
| 16 |
+
|
| 17 |
+
model_name = "Qwen/Qwen-Image"
|
| 18 |
+
|
| 19 |
+
# Load the pipeline
|
| 20 |
+
if torch.cuda.is_available():
|
| 21 |
+
torch_dtype = torch.bfloat16
|
| 22 |
+
device = "cuda"
|
| 23 |
+
else:
|
| 24 |
+
torch_dtype = torch.float32
|
| 25 |
+
device = "cpu"
|
| 26 |
+
|
| 27 |
+
pipe = DiffusionPipeline.from_pretrained(model_name, torch_dtype=torch_dtype)
|
| 28 |
+
|
| 29 |
MAX_SEED = np.iinfo(np.int32).max
|
| 30 |
MAX_IMAGE_SIZE = 1440
|
| 31 |
|
|
|
|
| 45 |
else:
|
| 46 |
return 1328, 1328
|
| 47 |
|
| 48 |
+
@spaces.GPU(duration=60)
|
| 49 |
+
def infer_diffusers(
|
| 50 |
+
prompt,
|
| 51 |
+
negative_prompt=" ",
|
| 52 |
+
seed=42,
|
| 53 |
+
randomize_seed=False,
|
| 54 |
+
aspect_ratio="16:9",
|
| 55 |
+
guidance_scale=4,
|
| 56 |
+
num_inference_steps=50,
|
| 57 |
+
progress=gr.Progress(track_tqdm=True),
|
| 58 |
+
):
|
| 59 |
+
if randomize_seed:
|
| 60 |
+
seed = random.randint(0, MAX_SEED)
|
| 61 |
+
width, height = get_image_size(aspect_ratio)
|
| 62 |
+
|
| 63 |
+
print("Generating for prompt:", prompt)
|
| 64 |
+
pipe(
|
| 65 |
+
prompt=prompt,
|
| 66 |
+
negative_prompt=negative_prompt,
|
| 67 |
+
width=width,
|
| 68 |
+
height=height,
|
| 69 |
+
num_inference_steps=50,
|
| 70 |
+
true_cfg_scale=4.0,
|
| 71 |
+
generator=torch.Generator(device="cuda").manual_seed(42)
|
| 72 |
+
).images[0]
|
| 73 |
+
|
| 74 |
+
#image.save("example.png")
|
| 75 |
+
|
| 76 |
+
return image, seed
|
| 77 |
+
|
| 78 |
+
|
| 79 |
@spaces.GPU(duration=65)
|
| 80 |
def infer(
|
| 81 |
prompt,
|
|
|
|
| 204 |
gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=False, cache_mode="lazy")
|
| 205 |
gr.on(
|
| 206 |
triggers=[run_button.click, prompt.submit],
|
| 207 |
+
fn=infer_diffusers,
|
| 208 |
inputs=[
|
| 209 |
prompt,
|
| 210 |
negative_prompt,
|