SlimFace-demo / src /slimface /inference /end2end_inference.py
danhtran2mind's picture
Upload 164 files
b7f710c verified
raw
history blame
10.1 kB
import os
import sys
import torch
import torchvision.transforms as transforms
from PIL import Image
import argparse
import warnings
import json
# Append necessary paths
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "..", "third_party")))
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
from edgeface.face_alignment import align as edgeface_align
from edgeface.backbones import get_model
from models.detection_models import align as align_classifier
def preprocess_image(image_path, algorithm='yolo', resolution=224):
try:
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=FutureWarning, message=".*rcond.*")
aligned_result = align_classifier.get_aligned_face([image_path], algorithm=algorithm)
aligned_image = aligned_result[0][1] if aligned_result and len(aligned_result) > 0 else Image.open(image_path).convert('RGB')
aligned_image = aligned_image.resize((resolution, resolution), Image.Resampling.LANCZOS)
except Exception as e:
print(f"Error processing {image_path}: {e}")
aligned_image = Image.open(image_path).convert('RGB').resize((resolution, resolution), Image.Resampling.LANCZOS)
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
return transform(aligned_image).unsqueeze(0)
def load_model(model_path):
try:
model = torch.jit.load(model_path, map_location=torch.device('cpu'))
model.eval()
return model
except Exception as e:
raise RuntimeError(f"Failed to load model from {model_path}: {e}")
def load_class_mapping(index_to_class_mapping_path):
try:
with open(index_to_class_mapping_path, 'r') as f:
idx_to_class = json.load(f)
return {int(k): v for k, v in idx_to_class.items()}
except Exception as e:
raise ValueError(f"Error loading class mapping: {e}")
def get_edgeface_embeddings(image_path, model_path):
"""Get EdgeFace embeddings for a given image."""
model_name = os.path.basename(model_path).split('.')[0]
model = get_model(model_name)
model.load_state_dict(torch.load(model_path, map_location='cpu'))
model.eval()
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
])
aligned_result = edgeface_align.get_aligned_face(image_path, algorithm='yolo')
if not aligned_result:
raise ValueError(f"Face alignment failed for {image_path}")
with torch.no_grad():
return model(transform(aligned_result[0][1]).unsqueeze(0))
# def inference_and_confirm(args):
# idx_to_class = load_class_mapping(args.index_to_class_mapping_path)
# classifier_model = load_model(args.model_path)
# device = torch.device('cuda' if torch.cuda.is_available() and args.accelerator == 'gpu' else 'cpu')
# classifier_model = classifier_model.to(device)
# # Load reference images mapping from JSON file
# try:
# with open(args.reference_dict_path, 'r') as f:
# reference_images = json.load(f)
# except Exception as e:
# raise ValueError(f"Error loading reference images from {args.reference_dict_path}: {e}")
# # Handle single image or directory
# image_paths = [args.unknown_image_path] if args.unknown_image_path.endswith(('.jpg', '.jpeg', '.png')) else [
# os.path.join(args.unknown_image_path, img) for img in os.listdir(args.unknown_image_path)
# if img.endswith(('.jpg', '.jpeg', '.png'))
# ]
# results = []
# with torch.no_grad():
# for image_path in image_paths:
# image_tensor = preprocess_image(image_path, args.algorithm, args.resolution).to(device)
# output = classifier_model(image_tensor)
# probabilities = torch.softmax(output, dim=1)
# confidence, predicted = torch.max(probabilities, 1)
# predicted_class = idx_to_class.get(predicted.item(), "Unknown")
# result = {'image_path': image_path, 'predicted_class': predicted_class, 'confidence': confidence.item()}
# # Validate with EdgeFace embeddings if reference image exists
# reference_image_path = reference_images.get(predicted_class)
# if reference_image_path and os.path.exists(reference_image_path):
# unknown_embedding = get_edgeface_embeddings(image_path, args.edgeface_model_path)
# reference_embedding = get_edgeface_embeddings(reference_image_path, args.edgeface_model_path)
# similarity = torch.nn.functional.cosine_similarity(unknown_embedding, reference_embedding).item()
# result['similarity'] = similarity
# result['confirmed'] = similarity >= args.similarity_threshold
# else:
# raise ValueError(f("Reference image for class '{predicted_class}' "
# "not found in {args.reference_dict_path}"))
# results.append(result)
# # {'image_path': 'tests/test_images/dont_know.jpg', 'predicted_class': 'Robert Downey Jr',
# # 'confidence': 0.9292604923248291, 'similarity': 0.603316068649292, 'confirmed': True}
return results
def inference_and_confirm(args):
idx_to_class = load_class_mapping(args.index_to_class_mapping_path)
classifier_model = load_model(args.model_path)
device = torch.device('cuda' if torch.cuda.is_available() and args.accelerator == 'gpu' else 'cpu')
classifier_model = classifier_model.to(device)
# Load reference images mapping from JSON file
try:
with open(args.reference_dict_path, 'r') as f:
reference_images = json.load(f)
except Exception as e:
raise ValueError(f"Error loading reference images from {args.reference_dict_path}: {e}")
# Handle single image or directory
image_paths = [args.unknown_image_path] if args.unknown_image_path.endswith(('.jpg', '.jpeg', '.png')) else [
os.path.join(args.unknown_image_path, img) for img in os.listdir(args.unknown_image_path)
if img.endswith(('.jpg', '.jpeg', '.png'))
]
results = []
with torch.no_grad():
for image_path in image_paths:
image_tensor = preprocess_image(image_path, args.algorithm, args.resolution).to(device)
output = classifier_model(image_tensor)
probabilities = torch.softmax(output, dim=1)
confidence, predicted = torch.max(probabilities, 1)
predicted_class = idx_to_class.get(predicted.item(), "Unknown")
result = {'image_path': image_path, 'predicted_class': predicted_class, 'confidence': confidence.item()}
# Validate with EdgeFace embeddings if reference image exists
reference_image_path = reference_images.get(predicted_class)
if reference_image_path and os.path.exists(reference_image_path):
unknown_embedding = get_edgeface_embeddings(image_path, args.edgeface_model_path)
reference_embedding = get_edgeface_embeddings(reference_image_path, args.edgeface_model_path)
similarity = torch.nn.functional.cosine_similarity(unknown_embedding, reference_embedding).item()
result['similarity'] = similarity
result['confirmed'] = similarity >= args.similarity_threshold
else:
result['similarity'] = None
result['confirmed'] = False
results.append(result)
return results
def main(args):
results = inference_and_confirm(args)
for result in results:
print(f"Image: {result['image_path']}, Predicted Class: {result['predicted_class']}, "
f"Confidence: {result['confidence']:.4f}, Similarity: {result.get('similarity', 'N/A'):.4f}, "
f"Confirmed: {result.get('confirmed', 'N/A')}")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Face classification with EdgeFace embedding validation.')
parser.add_argument('--unknown_image_path', type=str, required=True, help='Path to image or directory.')
parser.add_argument('--reference_dict_path', type=str, required=True, help='Path to JSON file mapping classes to reference image paths.')
parser.add_argument('--index_to_class_mapping_path', type=str, required=True, help='Path to index-to-class JSON.')
parser.add_argument('--model_path', type=str, required=True, help='Path to classifier model (.pth).')
parser.add_argument('--edgeface_model_path', type=str, default='ckpts/idiap/edgeface_base.pt', help='EdgeFace model path.')
# parser.add_argument('--edgeface_model_dir', type=str, default='ckpts/idiap', help='EdgeFace model directory.')
parser.add_argument('--algorithm', type=str, default='yolo', choices=['mtcnn', 'yolo'], help='Face detection algorithm.')
parser.add_argument('--accelerator', type=str, default='auto', choices=['cpu', 'gpu', 'auto'], help='Accelerator type.')
parser.add_argument('--resolution', type=int, default=224, help='Input image resolution.')
parser.add_argument('--similarity_threshold', type=float, default=0.6, help='Cosine similarity threshold.')
args = parser.parse_args()
main(args)
# python src/slimface/inference/end2end_inference.py \
# --unknown_image_path tests/test_images/dont_know.jpg \
# --reference_dict_path tests/reference_image_data.json \
# --index_to_class_mapping_path /content/SlimFace/ckpts/index_to_class_mapping.json \
# --model_path /content/SlimFace/ckpts/SlimFace_efficientnet_b3_full_model.pth \
# --edgeface_model_name edgeface_base \
# --similarity_threshold 0.6