import streamlit as st import pandas as pd import numpy as np import re import torch from transformers import pipeline from transformers import AutoModelForCausalLM, AutoTokenizer st.title('Booba') st.subheader("Commencez la phrase, l'algorithme la termine.") st.write("Note : la génération du texte prend ~ 5 minutes") with st.form("my_form"): text = st.text_input("Début de la phrase :", "C'était Noël dans la famille") # Every form must have a submit button. submitted = st.form_submit_button("Générer la suite") # Load the model --- model_checkpoint = "bigscience/bloom-560m" tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) model = AutoModelForCausalLM.from_pretrained("dan-vdb/BoobaAI") device = torch.device("cpu") # device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, device=device ) # --- if submitted: text = pipe(text, num_return_sequences=1, max_length=200, repetition_penalty=2.0)[0]["generated_text"] text = re.sub("( [A-Z])", r"\n\1", text) for t in text: st.write(t)