Spaces:
Runtime error
Runtime error
Commit
·
cc87b21
1
Parent(s):
5f550f4
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
from keras.datasets import mnist
|
4 |
+
from keras.utils import np_utils
|
5 |
+
from tensorflow import keras
|
6 |
+
import numpy as np
|
7 |
+
from tensorflow.keras import datasets
|
8 |
+
import os
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
11 |
+
|
12 |
+
# Adversarial attacks mnist
|
13 |
+
def create_pattern_mnist(image, label, model):
|
14 |
+
# Define loss function
|
15 |
+
loss_function = tf.keras.losses.CategoricalCrossentropy()
|
16 |
+
# Reshape image
|
17 |
+
image = image.reshape((1,image.shape[0]))
|
18 |
+
image = tf.cast(image, tf.float32)
|
19 |
+
# Reshape label
|
20 |
+
label = label.reshape(((1,label.shape[0])))
|
21 |
+
with tf.GradientTape() as tape:
|
22 |
+
tape.watch(image)
|
23 |
+
prediction = model(image)
|
24 |
+
loss = loss_function(label, prediction)
|
25 |
+
|
26 |
+
# Get the gradients of the loss w.r.t to the input image.
|
27 |
+
gradient = tape.gradient(loss, image)
|
28 |
+
# Get the sign of the gradients to create the perturbation
|
29 |
+
signed_grad = tf.sign(gradient)
|
30 |
+
return signed_grad.numpy()
|
31 |
+
|
32 |
+
def fgsm_mnist(image, label, model, epsilon):
|
33 |
+
pattern = create_pattern_mnist(image, label, model)
|
34 |
+
adv_x = image + epsilon*pattern
|
35 |
+
adv_x = tf.clip_by_value(adv_x, -1, 1)
|
36 |
+
adv_x = adv_x * 0.5 + 0.5
|
37 |
+
return adv_x.numpy()
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
+
def iterative_fgsm_mnist(image, label, model, epsilon, alpha, niter):
|
42 |
+
adv_x = image
|
43 |
+
for _ in range(niter):
|
44 |
+
pattern = create_pattern_mnist(adv_x, label, model)
|
45 |
+
adv_x = adv_x + alpha * pattern
|
46 |
+
adv_x = tf.clip_by_value(adv_x, image - epsilon, image+epsilon)
|
47 |
+
adv_x = adv_x.numpy()
|
48 |
+
adv_x = adv_x.reshape(adv_x.shape[1])
|
49 |
+
adv_x = tf.clip_by_value(adv_x, -1, 1)
|
50 |
+
adv_x = adv_x * 0.5 + 0.5
|
51 |
+
return adv_x.numpy()
|
52 |
+
|
53 |
+
def iterative_least_likely_fgsm_mnist(image, model, epsilon, alpha, niter, nb_classes):
|
54 |
+
adv_x = image
|
55 |
+
image = image.reshape((1,image.shape[0]))
|
56 |
+
label = np_utils.to_categorical(np.argmin(model(image)), nb_classes)
|
57 |
+
image = image.reshape(image.shape[1])
|
58 |
+
for _ in range(niter):
|
59 |
+
pattern = create_pattern_mnist(adv_x, label, model)
|
60 |
+
adv_x = adv_x - alpha * pattern
|
61 |
+
adv_x = tf.clip_by_value(adv_x, image - epsilon, image+epsilon)
|
62 |
+
adv_x = adv_x.numpy()
|
63 |
+
adv_x = adv_x.reshape(adv_x.shape[1])
|
64 |
+
adv_x = tf.clip_by_value(adv_x, -1, 1)
|
65 |
+
adv_x = adv_x * 0.5 + 0.5
|
66 |
+
return adv_x.numpy()
|
67 |
+
|
68 |
+
# Attack functions cifar10
|
69 |
+
def create_pattern_cifar10(image, label, model):
|
70 |
+
# Define loss function
|
71 |
+
loss_function = tf.keras.losses.CategoricalCrossentropy()
|
72 |
+
# Reshape image
|
73 |
+
image = image.reshape((1,32,32,3))
|
74 |
+
image = tf.cast(image, tf.float32)
|
75 |
+
# Reshape label
|
76 |
+
label = label.reshape(((1,10)))
|
77 |
+
with tf.GradientTape() as tape:
|
78 |
+
tape.watch(image)
|
79 |
+
prediction = model(image)
|
80 |
+
loss = loss_function(label, prediction)
|
81 |
+
|
82 |
+
# Get the gradients of the loss w.r.t to the input image.
|
83 |
+
gradient = tape.gradient(loss, image)
|
84 |
+
# Get the sign of the gradients to create the perturbation
|
85 |
+
signed_grad = tf.sign(gradient)
|
86 |
+
return signed_grad.numpy()
|
87 |
+
|
88 |
+
def fgsm_cifar10(image, label, model, epsilon):
|
89 |
+
pattern = create_pattern_cifar10(image, label, model)
|
90 |
+
adv_x = image + epsilon*pattern
|
91 |
+
adv_x = tf.clip_by_value(adv_x, -1, 1)
|
92 |
+
adv_x = adv_x * 0.5 + 0.5
|
93 |
+
return adv_x.numpy()
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
def iterative_fgsm_cifar10(image, label, model, epsilon, alpha, niter):
|
98 |
+
adv_x = image
|
99 |
+
for _ in range(niter):
|
100 |
+
pattern = create_pattern_cifar10(adv_x, label, model)
|
101 |
+
adv_x = adv_x + alpha * pattern
|
102 |
+
adv_x = tf.clip_by_value(adv_x, image - epsilon, image+epsilon)
|
103 |
+
adv_x = adv_x.numpy()
|
104 |
+
adv_x = adv_x.reshape((32,32,3))
|
105 |
+
adv_x = tf.clip_by_value(adv_x, -1, 1)
|
106 |
+
adv_x = adv_x * 0.5 + 0.5
|
107 |
+
return adv_x.numpy()
|
108 |
+
|
109 |
+
def iterative_least_likely_fgsm_cifar10(image, model, epsilon, alpha, niter, nb_classes):
|
110 |
+
adv_x = image
|
111 |
+
image = image.reshape((1,32,32,3))
|
112 |
+
label = np_utils.to_categorical(np.argmin(model(image)), nb_classes)
|
113 |
+
image = image.reshape((32,32,3))
|
114 |
+
for _ in range(niter):
|
115 |
+
pattern = create_pattern_cifar10(adv_x, label, model)
|
116 |
+
adv_x = adv_x - alpha * pattern
|
117 |
+
adv_x = tf.clip_by_value(adv_x, image - epsilon, image+epsilon)
|
118 |
+
adv_x = adv_x.numpy()
|
119 |
+
adv_x = adv_x.reshape((32,32,3))
|
120 |
+
adv_x = tf.clip_by_value(adv_x, -1, 1)
|
121 |
+
adv_x = adv_x * 0.5 + 0.5
|
122 |
+
return adv_x.numpy()
|
123 |
+
|
124 |
+
def fn(dataset, attack):
|
125 |
+
epsilon=10/255
|
126 |
+
alpha=1
|
127 |
+
niter = int(min(4 + epsilon*255, 1.25 * epsilon * 255))
|
128 |
+
nb_classes = 10
|
129 |
+
classes = ["airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck"]
|
130 |
+
|
131 |
+
if dataset == "MNIST":
|
132 |
+
idx = np.random.randint(0, len(X_test_mnist))
|
133 |
+
image1 = X_test_mnist[idx]
|
134 |
+
label1 = Y_test_mnist[idx]
|
135 |
+
pred1 = np.argmax(label1)
|
136 |
+
if attack == "FGSM":
|
137 |
+
image2 = fgsm_mnist(image1, label1, model_mnist, epsilon)
|
138 |
+
elif attack == "I_FGSM":
|
139 |
+
image2 = iterative_fgsm_mnist(image1, label1, model_mnist, epsilon, alpha, niter)
|
140 |
+
else:
|
141 |
+
image2 = iterative_least_likely_fgsm_mnist(image1, model_mnist, epsilon, alpha, niter, nb_classes)
|
142 |
+
|
143 |
+
pred2 = np.argmax(model_mnist(image2.reshape((1,784))))
|
144 |
+
image1 = image1.reshape((28,28))
|
145 |
+
image2 = image2.reshape((28,28))
|
146 |
+
else:
|
147 |
+
idx = np.random.randint(0, len(X_test_cifar10))
|
148 |
+
image1 = X_test_cifar10[idx]
|
149 |
+
label1 = Y_test_cifar10[idx]
|
150 |
+
pred1 = classes[np.argmax(label1)]
|
151 |
+
print(pred1)
|
152 |
+
if attack == "FGSM":
|
153 |
+
image2 = fgsm_cifar10(image1, label1, model_cifar10, epsilon)
|
154 |
+
elif attack == "I_FGSM":
|
155 |
+
image2 = iterative_fgsm_cifar10(image1, label1, model_cifar10, epsilon, alpha, niter)
|
156 |
+
else:
|
157 |
+
image2 = iterative_least_likely_fgsm_cifar10(image1, model_cifar10, epsilon, alpha, niter, nb_classes)
|
158 |
+
|
159 |
+
pred2 = classes[np.argmax(model_cifar10(image2.reshape((1,32,32,3))))]
|
160 |
+
print(pred2)
|
161 |
+
image1 = image1.reshape((32,32,3))
|
162 |
+
image2 = image2.reshape((32,32,3))
|
163 |
+
|
164 |
+
return image1, pred1, image2, pred2
|
165 |
+
|
166 |
+
|
167 |
+
model_mnist = keras.models.load_model('mnist.h5')
|
168 |
+
model_cifar10 = keras.models.load_model('cifar10.h5')
|
169 |
+
|
170 |
+
# Load MNIST data
|
171 |
+
(_, _), (X_test_mnist, Y_test_mnist) = mnist.load_data()
|
172 |
+
X_test_mnist = X_test_mnist.astype('float32')
|
173 |
+
X_test_mnist = X_test_mnist.reshape(10000, 784)
|
174 |
+
X_test_mnist /= 255
|
175 |
+
nb_classes = 10
|
176 |
+
Y_test_mnist = np_utils.to_categorical(Y_test_mnist, nb_classes)
|
177 |
+
|
178 |
+
|
179 |
+
# Load CIFAR10 data
|
180 |
+
(_, _), (X_test_cifar10, Y_test_cifar10) = datasets.cifar10.load_data()
|
181 |
+
X_test_cifar10 = X_test_cifar10 / 255.0
|
182 |
+
Y_test_cifar10 = np_utils.to_categorical(Y_test_cifar10, nb_classes)
|
183 |
+
|
184 |
+
demo = gr.Interface(
|
185 |
+
fn=fn,
|
186 |
+
allow_flagging="never",
|
187 |
+
title="Adversarial attack demo",
|
188 |
+
description="A random image from the chosen dataset will be perturbated with the chosen attack type and both the original image and the perturbated image will be displayed.",
|
189 |
+
inputs=[
|
190 |
+
gr.Radio(choices=["MNIST", "CIFAR10"], label="Pick a dataset"),
|
191 |
+
gr.Radio(choices=["FGSM", "I-FGSM", "I-LL-FGSM"], label="Pick an attack")
|
192 |
+
],
|
193 |
+
outputs=[
|
194 |
+
gr.Image(label="Original Image").style(height=256,width=256),
|
195 |
+
gr.Textbox(label="Predicted class"),
|
196 |
+
gr.Image(label="Perturbated image").style(height=256,width=256),
|
197 |
+
gr.Textbox(label="Predicted class")],
|
198 |
+
)
|
199 |
+
demo.launch()
|