Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	update app.py
Browse files- .gitignore +9 -0
- README.md +3 -4
- app.py +147 -0
- requirements.txt +17 -0
- src_inference/__init__.py +0 -0
- src_inference/layers_cache.py +366 -0
- src_inference/lora_helper.py +194 -0
- src_inference/pipeline.py +746 -0
- test_imgs/00.png +0 -0
- test_imgs/01.png +0 -0
- test_imgs/02.png +0 -0
- test_imgs/03.png +0 -0
- test_imgs/04.png +0 -0
    	
        .gitignore
    ADDED
    
    | @@ -0,0 +1,9 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            output/
         | 
| 2 | 
            +
            results/
         | 
| 3 | 
            +
            datasets/
         | 
| 4 | 
            +
            wandb/
         | 
| 5 | 
            +
            scripts/
         | 
| 6 | 
            +
            __pycache__/
         | 
| 7 | 
            +
            default_config.yaml
         | 
| 8 | 
            +
            getDataset.py
         | 
| 9 | 
            +
            train.py
         | 
    	
        README.md
    CHANGED
    
    | @@ -1,13 +1,12 @@ | |
| 1 | 
             
            ---
         | 
| 2 | 
             
            title: OmniConsistency
         | 
| 3 | 
            -
            emoji:  | 
| 4 | 
            -
            colorFrom:  | 
| 5 | 
            -
            colorTo:  | 
| 6 | 
             
            sdk: gradio
         | 
| 7 | 
             
            sdk_version: 5.31.0
         | 
| 8 | 
             
            app_file: app.py
         | 
| 9 | 
             
            pinned: false
         | 
| 10 | 
            -
            license: mit
         | 
| 11 | 
             
            short_description: Generate styled image from reference image and external LoRA
         | 
| 12 | 
             
            ---
         | 
| 13 |  | 
|  | |
| 1 | 
             
            ---
         | 
| 2 | 
             
            title: OmniConsistency
         | 
| 3 | 
            +
            emoji: π
         | 
| 4 | 
            +
            colorFrom: gray
         | 
| 5 | 
            +
            colorTo: pink
         | 
| 6 | 
             
            sdk: gradio
         | 
| 7 | 
             
            sdk_version: 5.31.0
         | 
| 8 | 
             
            app_file: app.py
         | 
| 9 | 
             
            pinned: false
         | 
|  | |
| 10 | 
             
            short_description: Generate styled image from reference image and external LoRA
         | 
| 11 | 
             
            ---
         | 
| 12 |  | 
    	
        app.py
    ADDED
    
    | @@ -0,0 +1,147 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import spaces
         | 
| 2 | 
            +
            import time
         | 
| 3 | 
            +
            import torch
         | 
| 4 | 
            +
            import gradio as gr
         | 
| 5 | 
            +
            from PIL import Image
         | 
| 6 | 
            +
            from huggingface_hub import hf_hub_download
         | 
| 7 | 
            +
            from src_inference.pipeline import FluxPipeline
         | 
| 8 | 
            +
            from src_inference.lora_helper import set_single_lora
         | 
| 9 | 
            +
            import random
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            base_path = "black-forest-labs/FLUX.1-dev"
         | 
| 12 | 
            +
                
         | 
| 13 | 
            +
            # Download OmniConsistency LoRA using hf_hub_download
         | 
| 14 | 
            +
            omni_consistency_path = hf_hub_download(repo_id="showlab/OmniConsistency", 
         | 
| 15 | 
            +
                                                    filename="OmniConsistency.safetensors", 
         | 
| 16 | 
            +
                                                    local_dir="./Model")
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            # Initialize the pipeline with the model
         | 
| 19 | 
            +
            pipe = FluxPipeline.from_pretrained(base_path, torch_dtype=torch.bfloat16).to("cuda")
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            # Set LoRA weights
         | 
| 22 | 
            +
            set_single_lora(pipe.transformer, omni_consistency_path, lora_weights=[1], cond_size=512)
         | 
| 23 | 
            +
             | 
| 24 | 
            +
            # Function to clear cache
         | 
| 25 | 
            +
            def clear_cache(transformer):
         | 
| 26 | 
            +
                for name, attn_processor in transformer.attn_processors.items():
         | 
| 27 | 
            +
                    attn_processor.bank_kv.clear()
         | 
| 28 | 
            +
             | 
| 29 | 
            +
            # Function to download all LoRAs in advance
         | 
| 30 | 
            +
            def download_all_loras():
         | 
| 31 | 
            +
                lora_names = [
         | 
| 32 | 
            +
                    "3D_Chibi", "American_Cartoon", "Chinese_Ink", 
         | 
| 33 | 
            +
                    "Clay_Toy", "Fabric", "Ghibli", "Irasutoya",
         | 
| 34 | 
            +
                    "Jojo", "LEGO", "Line", "Macaron",
         | 
| 35 | 
            +
                    "Oil_Painting", "Origami", "Paper_Cutting", 
         | 
| 36 | 
            +
                    "Picasso", "Pixel", "Poly", "Pop_Art", 
         | 
| 37 | 
            +
                    "Rick_Morty", "Snoopy", "Van_Gogh", "Vector"
         | 
| 38 | 
            +
                ]
         | 
| 39 | 
            +
                for lora_name in lora_names:
         | 
| 40 | 
            +
                    hf_hub_download(repo_id="showlab/OmniConsistency", 
         | 
| 41 | 
            +
                                    filename=f"LoRAs/{lora_name}_rank128_bf16.safetensors", 
         | 
| 42 | 
            +
                                    local_dir="./LoRAs")
         | 
| 43 | 
            +
             | 
| 44 | 
            +
            # Download all LoRAs in advance before the interface is launched
         | 
| 45 | 
            +
            download_all_loras()
         | 
| 46 | 
            +
             | 
| 47 | 
            +
            # Main function to generate the image
         | 
| 48 | 
            +
            @spaces.GPU()
         | 
| 49 | 
            +
            def generate_image(lora_name, prompt, uploaded_image, width, height, guidance_scale, num_inference_steps, seed):
         | 
| 50 | 
            +
                # Download specific LoRA based on selection (use local directory as LoRAs are already downloaded)
         | 
| 51 | 
            +
                lora_path = f"./LoRAs/LoRAs/{lora_name}_rank128_bf16.safetensors"
         | 
| 52 | 
            +
             | 
| 53 | 
            +
                # Load the specific LoRA weights
         | 
| 54 | 
            +
                pipe.unload_lora_weights()
         | 
| 55 | 
            +
                pipe.load_lora_weights("./LoRAs/LoRAs", weight_name=f"{lora_name}_rank128_bf16.safetensors")
         | 
| 56 | 
            +
             | 
| 57 | 
            +
                # Prepare input image
         | 
| 58 | 
            +
                spatial_image = [uploaded_image.convert("RGB")]
         | 
| 59 | 
            +
                subject_images = []
         | 
| 60 | 
            +
             | 
| 61 | 
            +
                start_time = time.time()
         | 
| 62 | 
            +
             | 
| 63 | 
            +
                # Generate the image
         | 
| 64 | 
            +
                image = pipe(
         | 
| 65 | 
            +
                    prompt,
         | 
| 66 | 
            +
                    height=(int(height) // 8) * 8,
         | 
| 67 | 
            +
                    width=(int(width) // 8) * 8,
         | 
| 68 | 
            +
                    guidance_scale=guidance_scale,
         | 
| 69 | 
            +
                    num_inference_steps=num_inference_steps,
         | 
| 70 | 
            +
                    max_sequence_length=512,
         | 
| 71 | 
            +
                    generator=torch.Generator("cpu").manual_seed(seed),
         | 
| 72 | 
            +
                    spatial_images=spatial_image,
         | 
| 73 | 
            +
                    subject_images=subject_images,
         | 
| 74 | 
            +
                    cond_size=512,
         | 
| 75 | 
            +
                ).images[0]
         | 
| 76 | 
            +
             | 
| 77 | 
            +
                end_time = time.time()
         | 
| 78 | 
            +
                elapsed_time = end_time - start_time
         | 
| 79 | 
            +
                print(f"code running time: {elapsed_time} s")
         | 
| 80 | 
            +
             | 
| 81 | 
            +
                # Clear cache after generation
         | 
| 82 | 
            +
                clear_cache(pipe.transformer)
         | 
| 83 | 
            +
             | 
| 84 | 
            +
                return image
         | 
| 85 | 
            +
             | 
| 86 | 
            +
            # Example data
         | 
| 87 | 
            +
            examples = [
         | 
| 88 | 
            +
                ["3D_Chibi", "3D Chibi style",                  Image.open("./test_imgs/00.png"), 680, 1024, 3.5, 24, 42],
         | 
| 89 | 
            +
                ["Origami", "Origami style",                    Image.open("./test_imgs/01.png"), 560, 1024, 3.5, 24, 42],
         | 
| 90 | 
            +
                ["American_Cartoon", "American Cartoon style",  Image.open("./test_imgs/02.png"), 568, 1024, 3.5, 24, 42],
         | 
| 91 | 
            +
                ["Origami", "Origami style",                    Image.open("./test_imgs/03.png"), 768, 672, 3.5, 24, 42],
         | 
| 92 | 
            +
                ["Paper_Cutting", "Paper Cutting style",        Image.open("./test_imgs/04.png"), 696, 1024, 3.5, 24, 42]
         | 
| 93 | 
            +
            ]
         | 
| 94 | 
            +
             | 
| 95 | 
            +
            # Gradio interface setup
         | 
| 96 | 
            +
            def create_gradio_interface():
         | 
| 97 | 
            +
                lora_names = [
         | 
| 98 | 
            +
                    "3D_Chibi", "American_Cartoon", "Chinese_Ink", 
         | 
| 99 | 
            +
                    "Clay_Toy", "Fabric", "Ghibli", "Irasutoya",
         | 
| 100 | 
            +
                    "Jojo", "LEGO", "Line", "Macaron",
         | 
| 101 | 
            +
                    "Oil_Painting", "Origami", "Paper_Cutting", 
         | 
| 102 | 
            +
                    "Picasso", "Pixel", "Poly", "Pop_Art", 
         | 
| 103 | 
            +
                    "Rick_Morty", "Snoopy", "Van_Gogh", "Vector"
         | 
| 104 | 
            +
                ]
         | 
| 105 | 
            +
             | 
| 106 | 
            +
                with gr.Blocks() as demo:
         | 
| 107 | 
            +
                    gr.Markdown("# OmniConsistency LoRA Image Generation")
         | 
| 108 | 
            +
                    gr.Markdown("Select a LoRA, enter a prompt, and upload an image to generate a new image with OmniConsistency.")
         | 
| 109 | 
            +
                    with gr.Row():
         | 
| 110 | 
            +
                        with gr.Column(scale=1):
         | 
| 111 | 
            +
                            lora_dropdown = gr.Dropdown(lora_names, label="Select LoRA")
         | 
| 112 | 
            +
                            prompt_box = gr.Textbox(label="Prompt", placeholder="Enter a prompt...")
         | 
| 113 | 
            +
                            image_input = gr.Image(type="pil", label="Upload Image")
         | 
| 114 | 
            +
                        with gr.Column(scale=1):
         | 
| 115 | 
            +
                            width_box = gr.Textbox(label="Width", value="1024")
         | 
| 116 | 
            +
                            height_box = gr.Textbox(label="Height", value="1024")
         | 
| 117 | 
            +
                            guidance_slider = gr.Slider(minimum=0.1, maximum=20, value=3.5, step=0.1, label="Guidance Scale")
         | 
| 118 | 
            +
                            steps_slider = gr.Slider(minimum=1, maximum=50, value=25, step=1, label="Inference Steps")
         | 
| 119 | 
            +
                            seed_slider = gr.Slider(minimum=1, maximum=10000000000, value=42, step=1, label="Seed")
         | 
| 120 | 
            +
                            generate_button = gr.Button("Generate")
         | 
| 121 | 
            +
                            output_image = gr.Image(type="pil", label="Generated Image")
         | 
| 122 | 
            +
                    # Add examples for Generation
         | 
| 123 | 
            +
                    gr.Examples(
         | 
| 124 | 
            +
                        examples=examples,
         | 
| 125 | 
            +
                        inputs=[lora_dropdown, prompt_box, image_input, height_box, width_box, guidance_slider, steps_slider, seed_slider],
         | 
| 126 | 
            +
                        outputs=output_image,
         | 
| 127 | 
            +
                        fn=generate_image,
         | 
| 128 | 
            +
                        cache_examples=False,
         | 
| 129 | 
            +
                        label="Examples"
         | 
| 130 | 
            +
                    )
         | 
| 131 | 
            +
             | 
| 132 | 
            +
                    generate_button.click(
         | 
| 133 | 
            +
                        fn=generate_image,
         | 
| 134 | 
            +
                        inputs=[
         | 
| 135 | 
            +
                            lora_dropdown, prompt_box, image_input,
         | 
| 136 | 
            +
                            width_box, height_box, guidance_slider,
         | 
| 137 | 
            +
                            steps_slider, seed_slider
         | 
| 138 | 
            +
                        ],
         | 
| 139 | 
            +
                        outputs=output_image
         | 
| 140 | 
            +
                    )
         | 
| 141 | 
            +
             | 
| 142 | 
            +
                return demo
         | 
| 143 | 
            +
             | 
| 144 | 
            +
             | 
| 145 | 
            +
            # Launch the Gradio interface
         | 
| 146 | 
            +
            interface = create_gradio_interface()
         | 
| 147 | 
            +
            interface.launch()
         | 
    	
        requirements.txt
    ADDED
    
    | @@ -0,0 +1,17 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            --extra-index-url https://download.pytorch.org/whl/cu124
         | 
| 2 | 
            +
            torch
         | 
| 3 | 
            +
            torchvision
         | 
| 4 | 
            +
            torchaudio==2.3.1
         | 
| 5 | 
            +
            diffusers==0.32.2
         | 
| 6 | 
            +
            easydict==1.13
         | 
| 7 | 
            +
            einops==0.8.1
         | 
| 8 | 
            +
            peft==0.14.0
         | 
| 9 | 
            +
            pillow==11.0.0
         | 
| 10 | 
            +
            protobuf==5.29.3
         | 
| 11 | 
            +
            requests==2.32.3
         | 
| 12 | 
            +
            safetensors==0.5.2
         | 
| 13 | 
            +
            sentencepiece==0.2.0
         | 
| 14 | 
            +
            spaces==0.34.1
         | 
| 15 | 
            +
            transformers==4.49.0
         | 
| 16 | 
            +
            datasets
         | 
| 17 | 
            +
            wandb
         | 
    	
        src_inference/__init__.py
    ADDED
    
    | 
            File without changes
         | 
    	
        src_inference/layers_cache.py
    ADDED
    
    | @@ -0,0 +1,366 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import inspect
         | 
| 2 | 
            +
            import math
         | 
| 3 | 
            +
            from typing import Callable, List, Optional, Tuple, Union
         | 
| 4 | 
            +
            from einops import rearrange
         | 
| 5 | 
            +
            import torch
         | 
| 6 | 
            +
            from torch import nn
         | 
| 7 | 
            +
            import torch.nn.functional as F
         | 
| 8 | 
            +
            from torch import Tensor
         | 
| 9 | 
            +
            from diffusers.models.attention_processor import Attention
         | 
| 10 | 
            +
                
         | 
| 11 | 
            +
            class LoRALinearLayer(nn.Module):
         | 
| 12 | 
            +
                def __init__(
         | 
| 13 | 
            +
                    self,
         | 
| 14 | 
            +
                    in_features: int,
         | 
| 15 | 
            +
                    out_features: int,
         | 
| 16 | 
            +
                    rank: int = 4,
         | 
| 17 | 
            +
                    network_alpha: Optional[float] = None,
         | 
| 18 | 
            +
                    device: Optional[Union[torch.device, str]] = None,
         | 
| 19 | 
            +
                    dtype: Optional[torch.dtype] = None,
         | 
| 20 | 
            +
                    cond_width=512,
         | 
| 21 | 
            +
                    cond_height=512,
         | 
| 22 | 
            +
                    number=0,
         | 
| 23 | 
            +
                    n_loras=1
         | 
| 24 | 
            +
                ):
         | 
| 25 | 
            +
                    super().__init__()
         | 
| 26 | 
            +
                    self.down = nn.Linear(in_features, rank, bias=False, device=device, dtype=dtype)
         | 
| 27 | 
            +
                    self.up = nn.Linear(rank, out_features, bias=False, device=device, dtype=dtype)
         | 
| 28 | 
            +
                    # This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
         | 
| 29 | 
            +
                    # See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
         | 
| 30 | 
            +
                    self.network_alpha = network_alpha
         | 
| 31 | 
            +
                    self.rank = rank
         | 
| 32 | 
            +
                    self.out_features = out_features
         | 
| 33 | 
            +
                    self.in_features = in_features
         | 
| 34 | 
            +
             | 
| 35 | 
            +
                    nn.init.normal_(self.down.weight, std=1 / rank)
         | 
| 36 | 
            +
                    nn.init.zeros_(self.up.weight)
         | 
| 37 | 
            +
                    
         | 
| 38 | 
            +
                    self.cond_height = cond_height
         | 
| 39 | 
            +
                    self.cond_width = cond_width
         | 
| 40 | 
            +
                    self.number = number
         | 
| 41 | 
            +
                    self.n_loras = n_loras
         | 
| 42 | 
            +
             | 
| 43 | 
            +
                def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
         | 
| 44 | 
            +
                    orig_dtype = hidden_states.dtype
         | 
| 45 | 
            +
                    dtype = self.down.weight.dtype
         | 
| 46 | 
            +
             | 
| 47 | 
            +
                    ####
         | 
| 48 | 
            +
                    batch_size = hidden_states.shape[0]
         | 
| 49 | 
            +
                    cond_size = self.cond_width // 8 * self.cond_height // 8 * 16 // 64
         | 
| 50 | 
            +
                    block_size =  hidden_states.shape[1] - cond_size * self.n_loras
         | 
| 51 | 
            +
                    shape = (batch_size, hidden_states.shape[1], 3072)
         | 
| 52 | 
            +
                    mask = torch.ones(shape, device=hidden_states.device, dtype=dtype) 
         | 
| 53 | 
            +
                    mask[:, :block_size+self.number*cond_size, :] = 0
         | 
| 54 | 
            +
                    mask[:, block_size+(self.number+1)*cond_size:, :] = 0
         | 
| 55 | 
            +
                    hidden_states = mask * hidden_states
         | 
| 56 | 
            +
                    ####
         | 
| 57 | 
            +
                    
         | 
| 58 | 
            +
                    down_hidden_states = self.down(hidden_states.to(dtype))
         | 
| 59 | 
            +
                    up_hidden_states = self.up(down_hidden_states)
         | 
| 60 | 
            +
             | 
| 61 | 
            +
                    if self.network_alpha is not None:
         | 
| 62 | 
            +
                        up_hidden_states *= self.network_alpha / self.rank
         | 
| 63 | 
            +
             | 
| 64 | 
            +
                    return up_hidden_states.to(orig_dtype)
         | 
| 65 | 
            +
                
         | 
| 66 | 
            +
             | 
| 67 | 
            +
            class MultiSingleStreamBlockLoraProcessor(nn.Module):
         | 
| 68 | 
            +
                def __init__(self, dim: int, ranks=[], lora_weights=[], network_alphas=[], device=None, dtype=None, cond_width=512, cond_height=512, n_loras=1):
         | 
| 69 | 
            +
                    super().__init__()
         | 
| 70 | 
            +
                    # Initialize a list to store the LoRA layers
         | 
| 71 | 
            +
                    self.n_loras = n_loras
         | 
| 72 | 
            +
                    self.cond_width = cond_width
         | 
| 73 | 
            +
                    self.cond_height = cond_height
         | 
| 74 | 
            +
                    
         | 
| 75 | 
            +
                    self.q_loras = nn.ModuleList([
         | 
| 76 | 
            +
                        LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
         | 
| 77 | 
            +
                        for i in range(n_loras)
         | 
| 78 | 
            +
                    ])
         | 
| 79 | 
            +
                    self.k_loras = nn.ModuleList([
         | 
| 80 | 
            +
                        LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
         | 
| 81 | 
            +
                        for i in range(n_loras)
         | 
| 82 | 
            +
                    ])
         | 
| 83 | 
            +
                    self.v_loras = nn.ModuleList([
         | 
| 84 | 
            +
                        LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
         | 
| 85 | 
            +
                        for i in range(n_loras)
         | 
| 86 | 
            +
                    ])
         | 
| 87 | 
            +
                    self.lora_weights = lora_weights
         | 
| 88 | 
            +
                    self.bank_attn = None
         | 
| 89 | 
            +
                    self.bank_kv = []
         | 
| 90 | 
            +
                    
         | 
| 91 | 
            +
             | 
| 92 | 
            +
                def __call__(self,
         | 
| 93 | 
            +
                    attn: Attention,
         | 
| 94 | 
            +
                    hidden_states: torch.FloatTensor,
         | 
| 95 | 
            +
                    encoder_hidden_states: torch.FloatTensor = None,
         | 
| 96 | 
            +
                    attention_mask: Optional[torch.FloatTensor] = None,
         | 
| 97 | 
            +
                    image_rotary_emb: Optional[torch.Tensor] = None,
         | 
| 98 | 
            +
                    use_cond = False,
         | 
| 99 | 
            +
                    image_emb: torch.FloatTensor = None
         | 
| 100 | 
            +
                ) -> torch.FloatTensor:
         | 
| 101 | 
            +
                    
         | 
| 102 | 
            +
                    scaled_cond_size = self.cond_width // 8 * self.cond_height // 8 * 16 // 64 
         | 
| 103 | 
            +
                    batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
         | 
| 104 | 
            +
                    scaled_seq_len = hidden_states.shape[1]
         | 
| 105 | 
            +
                    block_size =  scaled_seq_len - scaled_cond_size * self.n_loras
         | 
| 106 | 
            +
             | 
| 107 | 
            +
                    if len(self.bank_kv)== 0:
         | 
| 108 | 
            +
                        cache = True
         | 
| 109 | 
            +
                    else:
         | 
| 110 | 
            +
                        cache = False
         | 
| 111 | 
            +
                    
         | 
| 112 | 
            +
                    if cache:
         | 
| 113 | 
            +
                        query = attn.to_q(hidden_states) 
         | 
| 114 | 
            +
                        key = attn.to_k(hidden_states) 
         | 
| 115 | 
            +
                        value = attn.to_v(hidden_states) 
         | 
| 116 | 
            +
                        for i in range(self.n_loras):
         | 
| 117 | 
            +
                            query = query + self.lora_weights[i] * self.q_loras[i](hidden_states)
         | 
| 118 | 
            +
                            key = key + self.lora_weights[i] * self.k_loras[i](hidden_states)
         | 
| 119 | 
            +
                            value = value + self.lora_weights[i] * self.v_loras[i](hidden_states)
         | 
| 120 | 
            +
             | 
| 121 | 
            +
                        inner_dim = key.shape[-1]
         | 
| 122 | 
            +
                        head_dim = inner_dim // attn.heads
         | 
| 123 | 
            +
                        
         | 
| 124 | 
            +
                        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
         | 
| 125 | 
            +
                        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
         | 
| 126 | 
            +
                        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
         | 
| 127 | 
            +
             | 
| 128 | 
            +
             | 
| 129 | 
            +
                        self.bank_kv.append(key[:, :, block_size:, :])
         | 
| 130 | 
            +
                        self.bank_kv.append(value[:, :, block_size:, :])
         | 
| 131 | 
            +
                        
         | 
| 132 | 
            +
                        if attn.norm_q is not None:
         | 
| 133 | 
            +
                            query = attn.norm_q(query)
         | 
| 134 | 
            +
                        if attn.norm_k is not None:
         | 
| 135 | 
            +
                            key = attn.norm_k(key)
         | 
| 136 | 
            +
             | 
| 137 | 
            +
                        if image_rotary_emb is not None:
         | 
| 138 | 
            +
                            from diffusers.models.embeddings import apply_rotary_emb
         | 
| 139 | 
            +
                            query = apply_rotary_emb(query, image_rotary_emb)
         | 
| 140 | 
            +
                            key = apply_rotary_emb(key, image_rotary_emb)
         | 
| 141 | 
            +
                    
         | 
| 142 | 
            +
                        num_cond_blocks = self.n_loras
         | 
| 143 | 
            +
                        mask = torch.ones((scaled_seq_len, scaled_seq_len), device=hidden_states.device)
         | 
| 144 | 
            +
                        mask[ :block_size, :] = 0  # First block_size row
         | 
| 145 | 
            +
                        for i in range(num_cond_blocks):
         | 
| 146 | 
            +
                            start = i * scaled_cond_size + block_size
         | 
| 147 | 
            +
                            end = (i + 1) * scaled_cond_size + block_size
         | 
| 148 | 
            +
                            mask[start:end, start:end] = 0  # Diagonal blocks
         | 
| 149 | 
            +
                        mask = mask * -1e20
         | 
| 150 | 
            +
                        mask = mask.to(query.dtype)
         | 
| 151 | 
            +
             | 
| 152 | 
            +
                        hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=mask)            
         | 
| 153 | 
            +
                    else:
         | 
| 154 | 
            +
                        query = attn.to_q(hidden_states) 
         | 
| 155 | 
            +
                        key = attn.to_k(hidden_states)
         | 
| 156 | 
            +
                        value = attn.to_v(hidden_states)
         | 
| 157 | 
            +
             | 
| 158 | 
            +
                        inner_dim = query.shape[-1]
         | 
| 159 | 
            +
                        head_dim = inner_dim // attn.heads
         | 
| 160 | 
            +
                        
         | 
| 161 | 
            +
                        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
         | 
| 162 | 
            +
                        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
         | 
| 163 | 
            +
                        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
         | 
| 164 | 
            +
             | 
| 165 | 
            +
                        zero_pad = torch.zeros_like(self.bank_kv[0], dtype=query.dtype, device=query.device)
         | 
| 166 | 
            +
             | 
| 167 | 
            +
                    
         | 
| 168 | 
            +
                        key = torch.concat([key[:, :, :scaled_seq_len, :], self.bank_kv[0]], dim=-2)
         | 
| 169 | 
            +
                        value = torch.concat([value[:, :, :scaled_seq_len, :], self.bank_kv[1]], dim=-2)
         | 
| 170 | 
            +
             | 
| 171 | 
            +
                        if attn.norm_q is not None:
         | 
| 172 | 
            +
                            query = attn.norm_q(query)
         | 
| 173 | 
            +
                        if attn.norm_k is not None:
         | 
| 174 | 
            +
                            key = attn.norm_k(key)
         | 
| 175 | 
            +
             | 
| 176 | 
            +
                        query = torch.concat([query[:, :, :scaled_seq_len, :], zero_pad], dim=-2)
         | 
| 177 | 
            +
                        
         | 
| 178 | 
            +
                        if image_rotary_emb is not None:
         | 
| 179 | 
            +
                            from diffusers.models.embeddings import apply_rotary_emb
         | 
| 180 | 
            +
                            query = apply_rotary_emb(query, image_rotary_emb)
         | 
| 181 | 
            +
                            key = apply_rotary_emb(key, image_rotary_emb)
         | 
| 182 | 
            +
                        
         | 
| 183 | 
            +
                        query = query[:, :, :scaled_seq_len, :]
         | 
| 184 | 
            +
             | 
| 185 | 
            +
                        hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=None)
         | 
| 186 | 
            +
                        
         | 
| 187 | 
            +
                    hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
         | 
| 188 | 
            +
                    hidden_states = hidden_states.to(query.dtype)
         | 
| 189 | 
            +
             | 
| 190 | 
            +
                    hidden_states = hidden_states[:, : scaled_seq_len,:]
         | 
| 191 | 
            +
             | 
| 192 | 
            +
                    return hidden_states
         | 
| 193 | 
            +
             | 
| 194 | 
            +
             | 
| 195 | 
            +
            class MultiDoubleStreamBlockLoraProcessor(nn.Module):
         | 
| 196 | 
            +
                def __init__(self, dim: int, ranks=[], lora_weights=[], network_alphas=[], device=None, dtype=None, cond_width=512, cond_height=512, n_loras=1):
         | 
| 197 | 
            +
                    super().__init__()
         | 
| 198 | 
            +
                    
         | 
| 199 | 
            +
                    # Initialize a list to store the LoRA layers
         | 
| 200 | 
            +
                    self.n_loras = n_loras
         | 
| 201 | 
            +
                    self.cond_width = cond_width
         | 
| 202 | 
            +
                    self.cond_height = cond_height
         | 
| 203 | 
            +
                    self.q_loras = nn.ModuleList([
         | 
| 204 | 
            +
                        LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
         | 
| 205 | 
            +
                        for i in range(n_loras)
         | 
| 206 | 
            +
                    ])
         | 
| 207 | 
            +
                    self.k_loras = nn.ModuleList([
         | 
| 208 | 
            +
                        LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
         | 
| 209 | 
            +
                        for i in range(n_loras)
         | 
| 210 | 
            +
                    ])
         | 
| 211 | 
            +
                    self.v_loras = nn.ModuleList([
         | 
| 212 | 
            +
                        LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
         | 
| 213 | 
            +
                        for i in range(n_loras)
         | 
| 214 | 
            +
                    ])
         | 
| 215 | 
            +
                    self.proj_loras = nn.ModuleList([
         | 
| 216 | 
            +
                        LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
         | 
| 217 | 
            +
                        for i in range(n_loras)
         | 
| 218 | 
            +
                    ])
         | 
| 219 | 
            +
                    self.lora_weights = lora_weights
         | 
| 220 | 
            +
                    self.bank_attn = None
         | 
| 221 | 
            +
                    self.bank_kv = []
         | 
| 222 | 
            +
             | 
| 223 | 
            +
             | 
| 224 | 
            +
                def __call__(self,
         | 
| 225 | 
            +
                    attn: Attention,
         | 
| 226 | 
            +
                    hidden_states: torch.FloatTensor,
         | 
| 227 | 
            +
                    encoder_hidden_states: torch.FloatTensor = None,
         | 
| 228 | 
            +
                    attention_mask: Optional[torch.FloatTensor] = None,
         | 
| 229 | 
            +
                    image_rotary_emb: Optional[torch.Tensor] = None,
         | 
| 230 | 
            +
                    use_cond=False,
         | 
| 231 | 
            +
                    image_emb: torch.FloatTensor = None
         | 
| 232 | 
            +
                ) -> torch.FloatTensor:
         | 
| 233 | 
            +
                    
         | 
| 234 | 
            +
                    scaled_cond_size = self.cond_width // 8 * self.cond_height // 8 * 16 // 64 
         | 
| 235 | 
            +
                    batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
         | 
| 236 | 
            +
                    block_size =  hidden_states.shape[1]
         | 
| 237 | 
            +
                    scaled_seq_len = encoder_hidden_states.shape[1] + hidden_states.shape[1]
         | 
| 238 | 
            +
                    scaled_block_size = scaled_seq_len
         | 
| 239 | 
            +
             | 
| 240 | 
            +
                    # `context` projections.
         | 
| 241 | 
            +
                    inner_dim = 3072
         | 
| 242 | 
            +
                    head_dim = inner_dim // attn.heads
         | 
| 243 | 
            +
                    encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) 
         | 
| 244 | 
            +
                    encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
         | 
| 245 | 
            +
                    encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
         | 
| 246 | 
            +
             | 
| 247 | 
            +
                    encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
         | 
| 248 | 
            +
                        batch_size, -1, attn.heads, head_dim
         | 
| 249 | 
            +
                    ).transpose(1, 2)
         | 
| 250 | 
            +
                    encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
         | 
| 251 | 
            +
                        batch_size, -1, attn.heads, head_dim
         | 
| 252 | 
            +
                    ).transpose(1, 2)
         | 
| 253 | 
            +
                    encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
         | 
| 254 | 
            +
                        batch_size, -1, attn.heads, head_dim
         | 
| 255 | 
            +
                    ).transpose(1, 2)
         | 
| 256 | 
            +
             | 
| 257 | 
            +
                    if attn.norm_added_q is not None:
         | 
| 258 | 
            +
                        encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
         | 
| 259 | 
            +
                    if attn.norm_added_k is not None:
         | 
| 260 | 
            +
                        encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
         | 
| 261 | 
            +
                    
         | 
| 262 | 
            +
                    if len(self.bank_kv)== 0:
         | 
| 263 | 
            +
                        cache = True
         | 
| 264 | 
            +
                    else:
         | 
| 265 | 
            +
                        cache = False
         | 
| 266 | 
            +
                    
         | 
| 267 | 
            +
                    if cache:
         | 
| 268 | 
            +
                        
         | 
| 269 | 
            +
                        query = attn.to_q(hidden_states) 
         | 
| 270 | 
            +
                        key = attn.to_k(hidden_states) 
         | 
| 271 | 
            +
                        value = attn.to_v(hidden_states) 
         | 
| 272 | 
            +
                        for i in range(self.n_loras):
         | 
| 273 | 
            +
                            query = query + self.lora_weights[i] * self.q_loras[i](hidden_states)
         | 
| 274 | 
            +
                            key = key + self.lora_weights[i] * self.k_loras[i](hidden_states)
         | 
| 275 | 
            +
                            value = value + self.lora_weights[i] * self.v_loras[i](hidden_states)
         | 
| 276 | 
            +
             | 
| 277 | 
            +
                        inner_dim = key.shape[-1]
         | 
| 278 | 
            +
                        head_dim = inner_dim // attn.heads
         | 
| 279 | 
            +
                        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
         | 
| 280 | 
            +
                        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
         | 
| 281 | 
            +
                        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
         | 
| 282 | 
            +
                        
         | 
| 283 | 
            +
                        
         | 
| 284 | 
            +
                        self.bank_kv.append(key)
         | 
| 285 | 
            +
                        self.bank_kv.append(value)
         | 
| 286 | 
            +
             | 
| 287 | 
            +
                        if attn.norm_q is not None:
         | 
| 288 | 
            +
                            query = attn.norm_q(query)
         | 
| 289 | 
            +
                        if attn.norm_k is not None:
         | 
| 290 | 
            +
                            key = attn.norm_k(key)
         | 
| 291 | 
            +
                        
         | 
| 292 | 
            +
                        # attention
         | 
| 293 | 
            +
                        query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
         | 
| 294 | 
            +
                        key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
         | 
| 295 | 
            +
                        value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
         | 
| 296 | 
            +
             | 
| 297 | 
            +
                        if image_rotary_emb is not None:
         | 
| 298 | 
            +
                            from diffusers.models.embeddings import apply_rotary_emb
         | 
| 299 | 
            +
                            query = apply_rotary_emb(query, image_rotary_emb)
         | 
| 300 | 
            +
                            key = apply_rotary_emb(key, image_rotary_emb)
         | 
| 301 | 
            +
                        
         | 
| 302 | 
            +
                        num_cond_blocks = self.n_loras
         | 
| 303 | 
            +
                        mask = torch.ones((scaled_seq_len, scaled_seq_len), device=hidden_states.device)
         | 
| 304 | 
            +
                        mask[ :scaled_block_size-block_size, :] = 0  # First block_size row
         | 
| 305 | 
            +
                        for i in range(num_cond_blocks):
         | 
| 306 | 
            +
                            start = i * scaled_cond_size + scaled_block_size-block_size
         | 
| 307 | 
            +
                            end = (i + 1) * scaled_cond_size + scaled_block_size-block_size
         | 
| 308 | 
            +
                            mask[start:end, start:end] = 0  # Diagonal blocks
         | 
| 309 | 
            +
                        mask = mask * -1e20
         | 
| 310 | 
            +
                        mask = mask.to(query.dtype)
         | 
| 311 | 
            +
             | 
| 312 | 
            +
                        hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=mask)
         | 
| 313 | 
            +
                    
         | 
| 314 | 
            +
                    else:
         | 
| 315 | 
            +
                        query = attn.to_q(hidden_states) 
         | 
| 316 | 
            +
                        key = attn.to_k(hidden_states)
         | 
| 317 | 
            +
                        value = attn.to_v(hidden_states)
         | 
| 318 | 
            +
                
         | 
| 319 | 
            +
                        inner_dim = query.shape[-1]
         | 
| 320 | 
            +
                        head_dim = inner_dim // attn.heads
         | 
| 321 | 
            +
                        
         | 
| 322 | 
            +
                        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
         | 
| 323 | 
            +
                        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
         | 
| 324 | 
            +
                        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
         | 
| 325 | 
            +
             | 
| 326 | 
            +
                        zero_pad = torch.zeros_like(self.bank_kv[0], dtype=query.dtype, device=query.device)
         | 
| 327 | 
            +
             | 
| 328 | 
            +
                        key = torch.concat([key[:, :, :block_size, :], self.bank_kv[0]], dim=-2)
         | 
| 329 | 
            +
                        value = torch.concat([value[:, :, :block_size, :], self.bank_kv[1]], dim=-2)
         | 
| 330 | 
            +
                        
         | 
| 331 | 
            +
                        if attn.norm_q is not None:
         | 
| 332 | 
            +
                            query = attn.norm_q(query)
         | 
| 333 | 
            +
                        if attn.norm_k is not None:
         | 
| 334 | 
            +
                            key = attn.norm_k(key)
         | 
| 335 | 
            +
                        
         | 
| 336 | 
            +
                        query = torch.concat([query[:, :, :block_size, :], zero_pad], dim=-2)
         | 
| 337 | 
            +
             | 
| 338 | 
            +
                        # attention
         | 
| 339 | 
            +
                        query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
         | 
| 340 | 
            +
                        key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
         | 
| 341 | 
            +
                        value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
         | 
| 342 | 
            +
             | 
| 343 | 
            +
                        if image_rotary_emb is not None:
         | 
| 344 | 
            +
                            from diffusers.models.embeddings import apply_rotary_emb
         | 
| 345 | 
            +
                            query = apply_rotary_emb(query, image_rotary_emb)
         | 
| 346 | 
            +
                            key = apply_rotary_emb(key, image_rotary_emb)
         | 
| 347 | 
            +
                        
         | 
| 348 | 
            +
                        query = query[:, :, :scaled_block_size, :]
         | 
| 349 | 
            +
             | 
| 350 | 
            +
                        hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=None)
         | 
| 351 | 
            +
                        
         | 
| 352 | 
            +
                    hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
         | 
| 353 | 
            +
                    hidden_states = hidden_states.to(query.dtype)
         | 
| 354 | 
            +
                    
         | 
| 355 | 
            +
                    encoder_hidden_states, hidden_states = (
         | 
| 356 | 
            +
                        hidden_states[:, : encoder_hidden_states.shape[1]],
         | 
| 357 | 
            +
                        hidden_states[:, encoder_hidden_states.shape[1] :],
         | 
| 358 | 
            +
                    )
         | 
| 359 | 
            +
             | 
| 360 | 
            +
                    # Linear projection (with LoRA weight applied to each proj layer)
         | 
| 361 | 
            +
                    hidden_states = attn.to_out[0](hidden_states)
         | 
| 362 | 
            +
                    encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
         | 
| 363 | 
            +
                    
         | 
| 364 | 
            +
                    hidden_states = hidden_states[:, :block_size,:]
         | 
| 365 | 
            +
                    
         | 
| 366 | 
            +
                    return hidden_states, encoder_hidden_states
         | 
    	
        src_inference/lora_helper.py
    ADDED
    
    | @@ -0,0 +1,194 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from diffusers.models.attention_processor import FluxAttnProcessor2_0
         | 
| 2 | 
            +
            from safetensors import safe_open
         | 
| 3 | 
            +
            import re
         | 
| 4 | 
            +
            import torch
         | 
| 5 | 
            +
            from .layers_cache import MultiDoubleStreamBlockLoraProcessor, MultiSingleStreamBlockLoraProcessor
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            device = "cuda"
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            def load_safetensors(path):
         | 
| 10 | 
            +
                tensors = {}
         | 
| 11 | 
            +
                with safe_open(path, framework="pt", device="cpu") as f:
         | 
| 12 | 
            +
                    for key in f.keys():
         | 
| 13 | 
            +
                        tensors[key] = f.get_tensor(key)
         | 
| 14 | 
            +
                return tensors
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            def get_lora_rank(checkpoint):
         | 
| 17 | 
            +
                for k in checkpoint.keys():
         | 
| 18 | 
            +
                    if k.endswith(".down.weight"):
         | 
| 19 | 
            +
                        return checkpoint[k].shape[0]
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            def load_checkpoint(local_path):
         | 
| 22 | 
            +
                if local_path is not None:
         | 
| 23 | 
            +
                    if '.safetensors' in local_path:
         | 
| 24 | 
            +
                        print(f"Loading .safetensors checkpoint from {local_path}")
         | 
| 25 | 
            +
                        checkpoint = load_safetensors(local_path)
         | 
| 26 | 
            +
                    else:
         | 
| 27 | 
            +
                        print(f"Loading checkpoint from {local_path}")
         | 
| 28 | 
            +
                        checkpoint = torch.load(local_path, map_location='cpu')
         | 
| 29 | 
            +
                return checkpoint
         | 
| 30 | 
            +
             | 
| 31 | 
            +
            def update_model_with_lora(checkpoint, lora_weights, transformer, cond_size):
         | 
| 32 | 
            +
                    number = len(lora_weights)
         | 
| 33 | 
            +
                    ranks = [get_lora_rank(checkpoint) for _ in range(number)]
         | 
| 34 | 
            +
                    lora_attn_procs = {}
         | 
| 35 | 
            +
                    double_blocks_idx = list(range(19))
         | 
| 36 | 
            +
                    single_blocks_idx = list(range(38))
         | 
| 37 | 
            +
                    for name, attn_processor in transformer.attn_processors.items():
         | 
| 38 | 
            +
                        match = re.search(r'\.(\d+)\.', name)
         | 
| 39 | 
            +
                        if match:
         | 
| 40 | 
            +
                            layer_index = int(match.group(1))
         | 
| 41 | 
            +
                        
         | 
| 42 | 
            +
                        if name.startswith("transformer_blocks") and layer_index in double_blocks_idx:
         | 
| 43 | 
            +
                            
         | 
| 44 | 
            +
                            lora_state_dicts = {}
         | 
| 45 | 
            +
                            for key, value in checkpoint.items():
         | 
| 46 | 
            +
                                # Match based on the layer index in the key (assuming the key contains layer index)
         | 
| 47 | 
            +
                                if re.search(r'\.(\d+)\.', key):
         | 
| 48 | 
            +
                                    checkpoint_layer_index = int(re.search(r'\.(\d+)\.', key).group(1))
         | 
| 49 | 
            +
                                    if checkpoint_layer_index == layer_index and key.startswith("transformer_blocks"):
         | 
| 50 | 
            +
                                        lora_state_dicts[key] = value
         | 
| 51 | 
            +
                            
         | 
| 52 | 
            +
                            lora_attn_procs[name] = MultiDoubleStreamBlockLoraProcessor(
         | 
| 53 | 
            +
                                dim=3072, ranks=ranks, network_alphas=ranks, lora_weights=lora_weights, device=device, dtype=torch.bfloat16, cond_width=cond_size, cond_height=cond_size, n_loras=number
         | 
| 54 | 
            +
                            )
         | 
| 55 | 
            +
                            
         | 
| 56 | 
            +
                            # Load the weights from the checkpoint dictionary into the corresponding layers
         | 
| 57 | 
            +
                            for n in range(number):
         | 
| 58 | 
            +
                                lora_attn_procs[name].q_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.q_loras.{n}.down.weight', None)
         | 
| 59 | 
            +
                                lora_attn_procs[name].q_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.q_loras.{n}.up.weight', None)
         | 
| 60 | 
            +
                                lora_attn_procs[name].k_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.k_loras.{n}.down.weight', None)
         | 
| 61 | 
            +
                                lora_attn_procs[name].k_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.k_loras.{n}.up.weight', None)
         | 
| 62 | 
            +
                                lora_attn_procs[name].v_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.v_loras.{n}.down.weight', None)
         | 
| 63 | 
            +
                                lora_attn_procs[name].v_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.v_loras.{n}.up.weight', None)
         | 
| 64 | 
            +
                                lora_attn_procs[name].proj_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.proj_loras.{n}.down.weight', None)
         | 
| 65 | 
            +
                                lora_attn_procs[name].proj_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.proj_loras.{n}.up.weight', None)
         | 
| 66 | 
            +
                                lora_attn_procs[name].to(device)
         | 
| 67 | 
            +
                            
         | 
| 68 | 
            +
                        elif name.startswith("single_transformer_blocks") and layer_index in single_blocks_idx:
         | 
| 69 | 
            +
                            
         | 
| 70 | 
            +
                            lora_state_dicts = {}
         | 
| 71 | 
            +
                            for key, value in checkpoint.items():
         | 
| 72 | 
            +
                                if re.search(r'\.(\d+)\.', key):
         | 
| 73 | 
            +
                                    checkpoint_layer_index = int(re.search(r'\.(\d+)\.', key).group(1))
         | 
| 74 | 
            +
                                    if checkpoint_layer_index == layer_index and key.startswith("single_transformer_blocks"):
         | 
| 75 | 
            +
                                        lora_state_dicts[key] = value
         | 
| 76 | 
            +
                            
         | 
| 77 | 
            +
                            lora_attn_procs[name] = MultiSingleStreamBlockLoraProcessor(
         | 
| 78 | 
            +
                                dim=3072, ranks=ranks, network_alphas=ranks, lora_weights=lora_weights, device=device, dtype=torch.bfloat16, cond_width=cond_size, cond_height=cond_size, n_loras=number
         | 
| 79 | 
            +
                            )
         | 
| 80 | 
            +
                            for n in range(number):
         | 
| 81 | 
            +
                                lora_attn_procs[name].q_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.q_loras.{n}.down.weight', None)
         | 
| 82 | 
            +
                                lora_attn_procs[name].q_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.q_loras.{n}.up.weight', None)
         | 
| 83 | 
            +
                                lora_attn_procs[name].k_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.k_loras.{n}.down.weight', None)
         | 
| 84 | 
            +
                                lora_attn_procs[name].k_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.k_loras.{n}.up.weight', None)
         | 
| 85 | 
            +
                                lora_attn_procs[name].v_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.v_loras.{n}.down.weight', None)
         | 
| 86 | 
            +
                                lora_attn_procs[name].v_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.v_loras.{n}.up.weight', None)
         | 
| 87 | 
            +
                                lora_attn_procs[name].to(device)
         | 
| 88 | 
            +
                        else:
         | 
| 89 | 
            +
                            lora_attn_procs[name] = FluxAttnProcessor2_0()
         | 
| 90 | 
            +
             | 
| 91 | 
            +
                    transformer.set_attn_processor(lora_attn_procs)
         | 
| 92 | 
            +
                    
         | 
| 93 | 
            +
             | 
| 94 | 
            +
            def update_model_with_multi_lora(checkpoints, lora_weights, transformer, cond_size):
         | 
| 95 | 
            +
                    ck_number = len(checkpoints)
         | 
| 96 | 
            +
                    cond_lora_number = [len(ls) for ls in lora_weights]
         | 
| 97 | 
            +
                    cond_number = sum(cond_lora_number)
         | 
| 98 | 
            +
                    ranks = [get_lora_rank(checkpoint) for checkpoint in checkpoints]
         | 
| 99 | 
            +
                    multi_lora_weight = []
         | 
| 100 | 
            +
                    for ls in lora_weights:
         | 
| 101 | 
            +
                        for n in ls:
         | 
| 102 | 
            +
                            multi_lora_weight.append(n)
         | 
| 103 | 
            +
                    
         | 
| 104 | 
            +
                    lora_attn_procs = {}
         | 
| 105 | 
            +
                    double_blocks_idx = list(range(19))
         | 
| 106 | 
            +
                    single_blocks_idx = list(range(38))
         | 
| 107 | 
            +
                    for name, attn_processor in transformer.attn_processors.items():
         | 
| 108 | 
            +
                        match = re.search(r'\.(\d+)\.', name)
         | 
| 109 | 
            +
                        if match:
         | 
| 110 | 
            +
                            layer_index = int(match.group(1))
         | 
| 111 | 
            +
                        
         | 
| 112 | 
            +
                        if name.startswith("transformer_blocks") and layer_index in double_blocks_idx:
         | 
| 113 | 
            +
                            lora_state_dicts = [{} for _ in range(ck_number)]
         | 
| 114 | 
            +
                            for idx, checkpoint in enumerate(checkpoints):
         | 
| 115 | 
            +
                                for key, value in checkpoint.items():
         | 
| 116 | 
            +
                                    # Match based on the layer index in the key (assuming the key contains layer index)
         | 
| 117 | 
            +
                                    if re.search(r'\.(\d+)\.', key):
         | 
| 118 | 
            +
                                        checkpoint_layer_index = int(re.search(r'\.(\d+)\.', key).group(1))
         | 
| 119 | 
            +
                                        if checkpoint_layer_index == layer_index and key.startswith("transformer_blocks"):
         | 
| 120 | 
            +
                                            lora_state_dicts[idx][key] = value
         | 
| 121 | 
            +
                            
         | 
| 122 | 
            +
                            lora_attn_procs[name] = MultiDoubleStreamBlockLoraProcessor(
         | 
| 123 | 
            +
                                dim=3072, ranks=ranks, network_alphas=ranks, lora_weights=multi_lora_weight, device=device, dtype=torch.bfloat16, cond_width=cond_size, cond_height=cond_size, n_loras=cond_number
         | 
| 124 | 
            +
                            )
         | 
| 125 | 
            +
                            
         | 
| 126 | 
            +
                            # Load the weights from the checkpoint dictionary into the corresponding layers
         | 
| 127 | 
            +
                            num = 0
         | 
| 128 | 
            +
                            for idx in range(ck_number):
         | 
| 129 | 
            +
                                for n in range(cond_lora_number[idx]):
         | 
| 130 | 
            +
                                    lora_attn_procs[name].q_loras[num].down.weight.data = lora_state_dicts[idx].get(f'{name}.q_loras.{n}.down.weight', None)
         | 
| 131 | 
            +
                                    lora_attn_procs[name].q_loras[num].up.weight.data = lora_state_dicts[idx].get(f'{name}.q_loras.{n}.up.weight', None)
         | 
| 132 | 
            +
                                    lora_attn_procs[name].k_loras[num].down.weight.data = lora_state_dicts[idx].get(f'{name}.k_loras.{n}.down.weight', None)
         | 
| 133 | 
            +
                                    lora_attn_procs[name].k_loras[num].up.weight.data = lora_state_dicts[idx].get(f'{name}.k_loras.{n}.up.weight', None)
         | 
| 134 | 
            +
                                    lora_attn_procs[name].v_loras[num].down.weight.data = lora_state_dicts[idx].get(f'{name}.v_loras.{n}.down.weight', None)
         | 
| 135 | 
            +
                                    lora_attn_procs[name].v_loras[num].up.weight.data = lora_state_dicts[idx].get(f'{name}.v_loras.{n}.up.weight', None)
         | 
| 136 | 
            +
                                    lora_attn_procs[name].proj_loras[num].down.weight.data = lora_state_dicts[idx].get(f'{name}.proj_loras.{n}.down.weight', None)
         | 
| 137 | 
            +
                                    lora_attn_procs[name].proj_loras[num].up.weight.data = lora_state_dicts[idx].get(f'{name}.proj_loras.{n}.up.weight', None)
         | 
| 138 | 
            +
                                    lora_attn_procs[name].to(device)
         | 
| 139 | 
            +
                                    num += 1
         | 
| 140 | 
            +
                            
         | 
| 141 | 
            +
                        elif name.startswith("single_transformer_blocks") and layer_index in single_blocks_idx:
         | 
| 142 | 
            +
                            
         | 
| 143 | 
            +
                            lora_state_dicts = [{} for _ in range(ck_number)]
         | 
| 144 | 
            +
                            for idx, checkpoint in enumerate(checkpoints):
         | 
| 145 | 
            +
                                for key, value in checkpoint.items():
         | 
| 146 | 
            +
                                    # Match based on the layer index in the key (assuming the key contains layer index)
         | 
| 147 | 
            +
                                    if re.search(r'\.(\d+)\.', key):
         | 
| 148 | 
            +
                                        checkpoint_layer_index = int(re.search(r'\.(\d+)\.', key).group(1))
         | 
| 149 | 
            +
                                        if checkpoint_layer_index == layer_index and key.startswith("single_transformer_blocks"):
         | 
| 150 | 
            +
                                            lora_state_dicts[idx][key] = value
         | 
| 151 | 
            +
                            
         | 
| 152 | 
            +
                            lora_attn_procs[name] = MultiSingleStreamBlockLoraProcessor(
         | 
| 153 | 
            +
                                dim=3072, ranks=ranks, network_alphas=ranks, lora_weights=multi_lora_weight, device=device, dtype=torch.bfloat16, cond_width=cond_size, cond_height=cond_size, n_loras=cond_number
         | 
| 154 | 
            +
                            )
         | 
| 155 | 
            +
                            # Load the weights from the checkpoint dictionary into the corresponding layers
         | 
| 156 | 
            +
                            num = 0
         | 
| 157 | 
            +
                            for idx in range(ck_number):
         | 
| 158 | 
            +
                                for n in range(cond_lora_number[idx]):
         | 
| 159 | 
            +
                                    lora_attn_procs[name].q_loras[num].down.weight.data = lora_state_dicts[idx].get(f'{name}.q_loras.{n}.down.weight', None)
         | 
| 160 | 
            +
                                    lora_attn_procs[name].q_loras[num].up.weight.data = lora_state_dicts[idx].get(f'{name}.q_loras.{n}.up.weight', None)
         | 
| 161 | 
            +
                                    lora_attn_procs[name].k_loras[num].down.weight.data = lora_state_dicts[idx].get(f'{name}.k_loras.{n}.down.weight', None)
         | 
| 162 | 
            +
                                    lora_attn_procs[name].k_loras[num].up.weight.data = lora_state_dicts[idx].get(f'{name}.k_loras.{n}.up.weight', None)
         | 
| 163 | 
            +
                                    lora_attn_procs[name].v_loras[num].down.weight.data = lora_state_dicts[idx].get(f'{name}.v_loras.{n}.down.weight', None)
         | 
| 164 | 
            +
                                    lora_attn_procs[name].v_loras[num].up.weight.data = lora_state_dicts[idx].get(f'{name}.v_loras.{n}.up.weight', None)
         | 
| 165 | 
            +
                                    lora_attn_procs[name].to(device)
         | 
| 166 | 
            +
                                    num += 1
         | 
| 167 | 
            +
             | 
| 168 | 
            +
                        else:
         | 
| 169 | 
            +
                            lora_attn_procs[name] = FluxAttnProcessor2_0()
         | 
| 170 | 
            +
             | 
| 171 | 
            +
                    transformer.set_attn_processor(lora_attn_procs)
         | 
| 172 | 
            +
             | 
| 173 | 
            +
             | 
| 174 | 
            +
            def set_single_lora(transformer, local_path, lora_weights=[], cond_size=512):
         | 
| 175 | 
            +
                checkpoint = load_checkpoint(local_path)
         | 
| 176 | 
            +
                update_model_with_lora(checkpoint, lora_weights, transformer, cond_size)
         | 
| 177 | 
            +
               
         | 
| 178 | 
            +
            def set_multi_lora(transformer, local_paths, lora_weights=[[]], cond_size=512):
         | 
| 179 | 
            +
                checkpoints = [load_checkpoint(local_path) for local_path in local_paths]
         | 
| 180 | 
            +
                update_model_with_multi_lora(checkpoints, lora_weights, transformer, cond_size)
         | 
| 181 | 
            +
             | 
| 182 | 
            +
            def unset_lora(transformer):
         | 
| 183 | 
            +
                lora_attn_procs = {}
         | 
| 184 | 
            +
                for name, attn_processor in transformer.attn_processors.items():
         | 
| 185 | 
            +
                    lora_attn_procs[name] = FluxAttnProcessor2_0()
         | 
| 186 | 
            +
                transformer.set_attn_processor(lora_attn_procs)
         | 
| 187 | 
            +
             | 
| 188 | 
            +
             | 
| 189 | 
            +
            '''
         | 
| 190 | 
            +
            unset_lora(pipe.transformer)
         | 
| 191 | 
            +
            lora_path = "./lora.safetensors"
         | 
| 192 | 
            +
            lora_weights = [1, 1]
         | 
| 193 | 
            +
            set_lora(pipe.transformer, local_path=lora_path, lora_weights=lora_weights, cond_size=512)
         | 
| 194 | 
            +
            '''
         | 
    	
        src_inference/pipeline.py
    ADDED
    
    | @@ -0,0 +1,746 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import inspect
         | 
| 2 | 
            +
            from typing import Any, Callable, Dict, List, Optional, Union
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            import numpy as np
         | 
| 5 | 
            +
            import torch
         | 
| 6 | 
            +
            from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
         | 
| 7 | 
            +
             | 
| 8 | 
            +
            from diffusers.image_processor import (VaeImageProcessor)
         | 
| 9 | 
            +
            from diffusers.loaders import FluxLoraLoaderMixin, FromSingleFileMixin
         | 
| 10 | 
            +
            from diffusers.models.autoencoders import AutoencoderKL
         | 
| 11 | 
            +
            from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
         | 
| 12 | 
            +
            from diffusers.utils import (
         | 
| 13 | 
            +
                USE_PEFT_BACKEND,
         | 
| 14 | 
            +
                is_torch_xla_available,
         | 
| 15 | 
            +
                logging,
         | 
| 16 | 
            +
                scale_lora_layers,
         | 
| 17 | 
            +
                unscale_lora_layers,
         | 
| 18 | 
            +
            )
         | 
| 19 | 
            +
            from diffusers.utils.torch_utils import randn_tensor
         | 
| 20 | 
            +
            from diffusers.pipelines.pipeline_utils import DiffusionPipeline
         | 
| 21 | 
            +
            from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
         | 
| 22 | 
            +
            from torchvision.transforms.functional import pad
         | 
| 23 | 
            +
            from diffusers import FluxTransformer2DModel
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            if is_torch_xla_available():
         | 
| 26 | 
            +
                import torch_xla.core.xla_model as xm
         | 
| 27 | 
            +
             | 
| 28 | 
            +
                XLA_AVAILABLE = True
         | 
| 29 | 
            +
            else:
         | 
| 30 | 
            +
                XLA_AVAILABLE = False
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
         | 
| 33 | 
            +
             | 
| 34 | 
            +
            def calculate_shift(
         | 
| 35 | 
            +
                    image_seq_len,
         | 
| 36 | 
            +
                    base_seq_len: int = 256,
         | 
| 37 | 
            +
                    max_seq_len: int = 4096,
         | 
| 38 | 
            +
                    base_shift: float = 0.5,
         | 
| 39 | 
            +
                    max_shift: float = 1.16,
         | 
| 40 | 
            +
            ):
         | 
| 41 | 
            +
                m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
         | 
| 42 | 
            +
                b = base_shift - m * base_seq_len
         | 
| 43 | 
            +
                mu = image_seq_len * m + b
         | 
| 44 | 
            +
                return mu
         | 
| 45 | 
            +
             | 
| 46 | 
            +
            def prepare_latent_image_ids_(height, width, device, dtype):
         | 
| 47 | 
            +
                latent_image_ids = torch.zeros(height//2, width//2, 3, device=device, dtype=dtype)
         | 
| 48 | 
            +
                latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height//2, device=device)[:, None]  # y
         | 
| 49 | 
            +
                latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width//2, device=device)[None, :]   # x
         | 
| 50 | 
            +
                return latent_image_ids
         | 
| 51 | 
            +
             | 
| 52 | 
            +
            def prepare_latent_subject_ids(height, width, device, dtype):
         | 
| 53 | 
            +
                latent_image_ids = torch.zeros(height // 2, width // 2, 3, device=device, dtype=dtype)
         | 
| 54 | 
            +
                latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2, device=device)[:, None]
         | 
| 55 | 
            +
                latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2, device=device)[None, :]
         | 
| 56 | 
            +
                latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
         | 
| 57 | 
            +
                latent_image_ids = latent_image_ids.reshape(
         | 
| 58 | 
            +
                    latent_image_id_height * latent_image_id_width, latent_image_id_channels
         | 
| 59 | 
            +
                )
         | 
| 60 | 
            +
                return latent_image_ids.to(device=device, dtype=dtype)
         | 
| 61 | 
            +
             | 
| 62 | 
            +
            def resize_position_encoding(batch_size, original_height, original_width, target_height, target_width, device, dtype):
         | 
| 63 | 
            +
                latent_image_ids = prepare_latent_image_ids_(original_height, original_width, device, dtype)
         | 
| 64 | 
            +
                latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
         | 
| 65 | 
            +
                latent_image_ids = latent_image_ids.reshape(
         | 
| 66 | 
            +
                    latent_image_id_height * latent_image_id_width, latent_image_id_channels
         | 
| 67 | 
            +
                )
         | 
| 68 | 
            +
                
         | 
| 69 | 
            +
                scale_h = original_height / target_height
         | 
| 70 | 
            +
                scale_w = original_width / target_width
         | 
| 71 | 
            +
                latent_image_ids_resized = torch.zeros(target_height//2, target_width//2, 3, device=device, dtype=dtype)
         | 
| 72 | 
            +
                latent_image_ids_resized[..., 1] = latent_image_ids_resized[..., 1] + torch.arange(target_height//2, device=device)[:, None] * scale_h
         | 
| 73 | 
            +
                latent_image_ids_resized[..., 2] = latent_image_ids_resized[..., 2] + torch.arange(target_width//2, device=device)[None, :] * scale_w
         | 
| 74 | 
            +
                
         | 
| 75 | 
            +
                cond_latent_image_id_height, cond_latent_image_id_width, cond_latent_image_id_channels = latent_image_ids_resized.shape
         | 
| 76 | 
            +
                cond_latent_image_ids = latent_image_ids_resized.reshape(
         | 
| 77 | 
            +
                        cond_latent_image_id_height * cond_latent_image_id_width, cond_latent_image_id_channels
         | 
| 78 | 
            +
                    )
         | 
| 79 | 
            +
                return latent_image_ids, cond_latent_image_ids 
         | 
| 80 | 
            +
                
         | 
| 81 | 
            +
            # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
         | 
| 82 | 
            +
            def retrieve_latents(
         | 
| 83 | 
            +
                    encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
         | 
| 84 | 
            +
            ):
         | 
| 85 | 
            +
                if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
         | 
| 86 | 
            +
                    return encoder_output.latent_dist.sample(generator)
         | 
| 87 | 
            +
                elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
         | 
| 88 | 
            +
                    return encoder_output.latent_dist.mode()
         | 
| 89 | 
            +
                elif hasattr(encoder_output, "latents"):
         | 
| 90 | 
            +
                    return encoder_output.latents
         | 
| 91 | 
            +
                else:
         | 
| 92 | 
            +
                    raise AttributeError("Could not access latents of provided encoder_output")
         | 
| 93 | 
            +
             | 
| 94 | 
            +
             | 
| 95 | 
            +
            # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
         | 
| 96 | 
            +
            def retrieve_timesteps(
         | 
| 97 | 
            +
                    scheduler,
         | 
| 98 | 
            +
                    num_inference_steps: Optional[int] = None,
         | 
| 99 | 
            +
                    device: Optional[Union[str, torch.device]] = None,
         | 
| 100 | 
            +
                    timesteps: Optional[List[int]] = None,
         | 
| 101 | 
            +
                    sigmas: Optional[List[float]] = None,
         | 
| 102 | 
            +
                    **kwargs,
         | 
| 103 | 
            +
            ):
         | 
| 104 | 
            +
                if timesteps is not None and sigmas is not None:
         | 
| 105 | 
            +
                    raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
         | 
| 106 | 
            +
                if timesteps is not None:
         | 
| 107 | 
            +
                    accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
         | 
| 108 | 
            +
                    if not accepts_timesteps:
         | 
| 109 | 
            +
                        raise ValueError(
         | 
| 110 | 
            +
                            f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
         | 
| 111 | 
            +
                            f" timestep schedules. Please check whether you are using the correct scheduler."
         | 
| 112 | 
            +
                        )
         | 
| 113 | 
            +
                    scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
         | 
| 114 | 
            +
                    timesteps = scheduler.timesteps
         | 
| 115 | 
            +
                    num_inference_steps = len(timesteps)
         | 
| 116 | 
            +
                elif sigmas is not None:
         | 
| 117 | 
            +
                    accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
         | 
| 118 | 
            +
                    if not accept_sigmas:
         | 
| 119 | 
            +
                        raise ValueError(
         | 
| 120 | 
            +
                            f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
         | 
| 121 | 
            +
                            f" sigmas schedules. Please check whether you are using the correct scheduler."
         | 
| 122 | 
            +
                        )
         | 
| 123 | 
            +
                    scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
         | 
| 124 | 
            +
                    timesteps = scheduler.timesteps
         | 
| 125 | 
            +
                    num_inference_steps = len(timesteps)
         | 
| 126 | 
            +
                else:
         | 
| 127 | 
            +
                    scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
         | 
| 128 | 
            +
                    timesteps = scheduler.timesteps
         | 
| 129 | 
            +
                return timesteps, num_inference_steps
         | 
| 130 | 
            +
             | 
| 131 | 
            +
             | 
| 132 | 
            +
            class FluxPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFileMixin):
         | 
| 133 | 
            +
                def __init__(
         | 
| 134 | 
            +
                        self,
         | 
| 135 | 
            +
                        scheduler: FlowMatchEulerDiscreteScheduler,
         | 
| 136 | 
            +
                        vae: AutoencoderKL,
         | 
| 137 | 
            +
                        text_encoder: CLIPTextModel,
         | 
| 138 | 
            +
                        tokenizer: CLIPTokenizer,
         | 
| 139 | 
            +
                        text_encoder_2: T5EncoderModel,
         | 
| 140 | 
            +
                        tokenizer_2: T5TokenizerFast,
         | 
| 141 | 
            +
                        transformer: FluxTransformer2DModel,
         | 
| 142 | 
            +
                ):
         | 
| 143 | 
            +
                    super().__init__()
         | 
| 144 | 
            +
             | 
| 145 | 
            +
                    self.register_modules(
         | 
| 146 | 
            +
                        vae=vae,
         | 
| 147 | 
            +
                        text_encoder=text_encoder,
         | 
| 148 | 
            +
                        text_encoder_2=text_encoder_2,
         | 
| 149 | 
            +
                        tokenizer=tokenizer,
         | 
| 150 | 
            +
                        tokenizer_2=tokenizer_2,
         | 
| 151 | 
            +
                        transformer=transformer,
         | 
| 152 | 
            +
                        scheduler=scheduler,
         | 
| 153 | 
            +
                    )
         | 
| 154 | 
            +
                    self.vae_scale_factor = (
         | 
| 155 | 
            +
                        2 ** (len(self.vae.config.block_out_channels)) if hasattr(self, "vae") and self.vae is not None else 16
         | 
| 156 | 
            +
                    )
         | 
| 157 | 
            +
                    self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
         | 
| 158 | 
            +
                    self.tokenizer_max_length = (
         | 
| 159 | 
            +
                        self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
         | 
| 160 | 
            +
                    )
         | 
| 161 | 
            +
                    self.default_sample_size = 64
         | 
| 162 | 
            +
             | 
| 163 | 
            +
                def _get_t5_prompt_embeds(
         | 
| 164 | 
            +
                        self,
         | 
| 165 | 
            +
                        prompt: Union[str, List[str]] = None,
         | 
| 166 | 
            +
                        num_images_per_prompt: int = 1,
         | 
| 167 | 
            +
                        max_sequence_length: int = 512,
         | 
| 168 | 
            +
                        device: Optional[torch.device] = None,
         | 
| 169 | 
            +
                        dtype: Optional[torch.dtype] = None,
         | 
| 170 | 
            +
                ):
         | 
| 171 | 
            +
                    device = device or self._execution_device
         | 
| 172 | 
            +
                    dtype = dtype or self.text_encoder.dtype
         | 
| 173 | 
            +
             | 
| 174 | 
            +
                    prompt = [prompt] if isinstance(prompt, str) else prompt
         | 
| 175 | 
            +
                    batch_size = len(prompt)
         | 
| 176 | 
            +
             | 
| 177 | 
            +
                    text_inputs = self.tokenizer_2(
         | 
| 178 | 
            +
                        prompt,
         | 
| 179 | 
            +
                        padding="max_length",
         | 
| 180 | 
            +
                        max_length=max_sequence_length,
         | 
| 181 | 
            +
                        truncation=True,
         | 
| 182 | 
            +
                        return_length=False,
         | 
| 183 | 
            +
                        return_overflowing_tokens=False,
         | 
| 184 | 
            +
                        return_tensors="pt",
         | 
| 185 | 
            +
                    )
         | 
| 186 | 
            +
                    text_input_ids = text_inputs.input_ids
         | 
| 187 | 
            +
                    untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
         | 
| 188 | 
            +
             | 
| 189 | 
            +
                    if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
         | 
| 190 | 
            +
                        removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1: -1])
         | 
| 191 | 
            +
                        logger.warning(
         | 
| 192 | 
            +
                            "The following part of your input was truncated because `max_sequence_length` is set to "
         | 
| 193 | 
            +
                            f" {max_sequence_length} tokens: {removed_text}"
         | 
| 194 | 
            +
                        )
         | 
| 195 | 
            +
             | 
| 196 | 
            +
                    prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]
         | 
| 197 | 
            +
             | 
| 198 | 
            +
                    dtype = self.text_encoder_2.dtype
         | 
| 199 | 
            +
                    prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
         | 
| 200 | 
            +
             | 
| 201 | 
            +
                    _, seq_len, _ = prompt_embeds.shape
         | 
| 202 | 
            +
             | 
| 203 | 
            +
                    # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
         | 
| 204 | 
            +
                    prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
         | 
| 205 | 
            +
                    prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
         | 
| 206 | 
            +
             | 
| 207 | 
            +
                    return prompt_embeds
         | 
| 208 | 
            +
             | 
| 209 | 
            +
                def _get_clip_prompt_embeds(
         | 
| 210 | 
            +
                        self,
         | 
| 211 | 
            +
                        prompt: Union[str, List[str]],
         | 
| 212 | 
            +
                        num_images_per_prompt: int = 1,
         | 
| 213 | 
            +
                        device: Optional[torch.device] = None,
         | 
| 214 | 
            +
                ):
         | 
| 215 | 
            +
                    device = device or self._execution_device
         | 
| 216 | 
            +
             | 
| 217 | 
            +
                    prompt = [prompt] if isinstance(prompt, str) else prompt
         | 
| 218 | 
            +
                    batch_size = len(prompt)
         | 
| 219 | 
            +
             | 
| 220 | 
            +
                    text_inputs = self.tokenizer(
         | 
| 221 | 
            +
                        prompt,
         | 
| 222 | 
            +
                        padding="max_length",
         | 
| 223 | 
            +
                        max_length=self.tokenizer_max_length,
         | 
| 224 | 
            +
                        truncation=True,
         | 
| 225 | 
            +
                        return_overflowing_tokens=False,
         | 
| 226 | 
            +
                        return_length=False,
         | 
| 227 | 
            +
                        return_tensors="pt",
         | 
| 228 | 
            +
                    )
         | 
| 229 | 
            +
             | 
| 230 | 
            +
                    text_input_ids = text_inputs.input_ids
         | 
| 231 | 
            +
                    untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
         | 
| 232 | 
            +
                    if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
         | 
| 233 | 
            +
                        removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1: -1])
         | 
| 234 | 
            +
                        logger.warning(
         | 
| 235 | 
            +
                            "The following part of your input was truncated because CLIP can only handle sequences up to"
         | 
| 236 | 
            +
                            f" {self.tokenizer_max_length} tokens: {removed_text}"
         | 
| 237 | 
            +
                        )
         | 
| 238 | 
            +
                    prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
         | 
| 239 | 
            +
             | 
| 240 | 
            +
                    # Use pooled output of CLIPTextModel
         | 
| 241 | 
            +
                    prompt_embeds = prompt_embeds.pooler_output
         | 
| 242 | 
            +
                    prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
         | 
| 243 | 
            +
             | 
| 244 | 
            +
                    # duplicate text embeddings for each generation per prompt, using mps friendly method
         | 
| 245 | 
            +
                    prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
         | 
| 246 | 
            +
                    prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
         | 
| 247 | 
            +
             | 
| 248 | 
            +
                    return prompt_embeds
         | 
| 249 | 
            +
             | 
| 250 | 
            +
                def encode_prompt(
         | 
| 251 | 
            +
                        self,
         | 
| 252 | 
            +
                        prompt: Union[str, List[str]],
         | 
| 253 | 
            +
                        prompt_2: Union[str, List[str]],
         | 
| 254 | 
            +
                        device: Optional[torch.device] = None,
         | 
| 255 | 
            +
                        num_images_per_prompt: int = 1,
         | 
| 256 | 
            +
                        prompt_embeds: Optional[torch.FloatTensor] = None,
         | 
| 257 | 
            +
                        pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
         | 
| 258 | 
            +
                        max_sequence_length: int = 512,
         | 
| 259 | 
            +
                        lora_scale: Optional[float] = None,
         | 
| 260 | 
            +
                ):
         | 
| 261 | 
            +
                    device = device or self._execution_device
         | 
| 262 | 
            +
             | 
| 263 | 
            +
                    # set lora scale so that monkey patched LoRA
         | 
| 264 | 
            +
                    # function of text encoder can correctly access it
         | 
| 265 | 
            +
                    if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
         | 
| 266 | 
            +
                        self._lora_scale = lora_scale
         | 
| 267 | 
            +
             | 
| 268 | 
            +
                        # dynamically adjust the LoRA scale
         | 
| 269 | 
            +
                        if self.text_encoder is not None and USE_PEFT_BACKEND:
         | 
| 270 | 
            +
                            scale_lora_layers(self.text_encoder, lora_scale)
         | 
| 271 | 
            +
                        if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
         | 
| 272 | 
            +
                            scale_lora_layers(self.text_encoder_2, lora_scale)
         | 
| 273 | 
            +
             | 
| 274 | 
            +
                    prompt = [prompt] if isinstance(prompt, str) else prompt
         | 
| 275 | 
            +
             | 
| 276 | 
            +
                    if prompt_embeds is None:
         | 
| 277 | 
            +
                        prompt_2 = prompt_2 or prompt
         | 
| 278 | 
            +
                        prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
         | 
| 279 | 
            +
             | 
| 280 | 
            +
                        # We only use the pooled prompt output from the CLIPTextModel
         | 
| 281 | 
            +
                        pooled_prompt_embeds = self._get_clip_prompt_embeds(
         | 
| 282 | 
            +
                            prompt=prompt,
         | 
| 283 | 
            +
                            device=device,
         | 
| 284 | 
            +
                            num_images_per_prompt=num_images_per_prompt,
         | 
| 285 | 
            +
                        )
         | 
| 286 | 
            +
                        prompt_embeds = self._get_t5_prompt_embeds(
         | 
| 287 | 
            +
                            prompt=prompt_2,
         | 
| 288 | 
            +
                            num_images_per_prompt=num_images_per_prompt,
         | 
| 289 | 
            +
                            max_sequence_length=max_sequence_length,
         | 
| 290 | 
            +
                            device=device,
         | 
| 291 | 
            +
                        )
         | 
| 292 | 
            +
             | 
| 293 | 
            +
                    if self.text_encoder is not None:
         | 
| 294 | 
            +
                        if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
         | 
| 295 | 
            +
                            # Retrieve the original scale by scaling back the LoRA layers
         | 
| 296 | 
            +
                            unscale_lora_layers(self.text_encoder, lora_scale)
         | 
| 297 | 
            +
             | 
| 298 | 
            +
                    if self.text_encoder_2 is not None:
         | 
| 299 | 
            +
                        if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
         | 
| 300 | 
            +
                            # Retrieve the original scale by scaling back the LoRA layers
         | 
| 301 | 
            +
                            unscale_lora_layers(self.text_encoder_2, lora_scale)
         | 
| 302 | 
            +
             | 
| 303 | 
            +
                    dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
         | 
| 304 | 
            +
                    text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
         | 
| 305 | 
            +
             | 
| 306 | 
            +
                    return prompt_embeds, pooled_prompt_embeds, text_ids
         | 
| 307 | 
            +
             | 
| 308 | 
            +
                # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_inpaint.StableDiffusion3InpaintPipeline._encode_vae_image
         | 
| 309 | 
            +
                def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
         | 
| 310 | 
            +
                    if isinstance(generator, list):
         | 
| 311 | 
            +
                        image_latents = [
         | 
| 312 | 
            +
                            retrieve_latents(self.vae.encode(image[i: i + 1]), generator=generator[i])
         | 
| 313 | 
            +
                            for i in range(image.shape[0])
         | 
| 314 | 
            +
                        ]
         | 
| 315 | 
            +
                        image_latents = torch.cat(image_latents, dim=0)
         | 
| 316 | 
            +
                    else:
         | 
| 317 | 
            +
                        image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
         | 
| 318 | 
            +
             | 
| 319 | 
            +
                    image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
         | 
| 320 | 
            +
             | 
| 321 | 
            +
                    return image_latents
         | 
| 322 | 
            +
             | 
| 323 | 
            +
                def check_inputs(
         | 
| 324 | 
            +
                        self,
         | 
| 325 | 
            +
                        prompt,
         | 
| 326 | 
            +
                        prompt_2,
         | 
| 327 | 
            +
                        height,
         | 
| 328 | 
            +
                        width,
         | 
| 329 | 
            +
                        prompt_embeds=None,
         | 
| 330 | 
            +
                        pooled_prompt_embeds=None,
         | 
| 331 | 
            +
                        callback_on_step_end_tensor_inputs=None,
         | 
| 332 | 
            +
                        max_sequence_length=None,
         | 
| 333 | 
            +
                ):
         | 
| 334 | 
            +
                    if height % 8 != 0 or width % 8 != 0:
         | 
| 335 | 
            +
                        raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
         | 
| 336 | 
            +
             | 
| 337 | 
            +
                    if prompt is not None and prompt_embeds is not None:
         | 
| 338 | 
            +
                        raise ValueError(
         | 
| 339 | 
            +
                            f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
         | 
| 340 | 
            +
                            " only forward one of the two."
         | 
| 341 | 
            +
                        )
         | 
| 342 | 
            +
                    elif prompt_2 is not None and prompt_embeds is not None:
         | 
| 343 | 
            +
                        raise ValueError(
         | 
| 344 | 
            +
                            f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
         | 
| 345 | 
            +
                            " only forward one of the two."
         | 
| 346 | 
            +
                        )
         | 
| 347 | 
            +
                    elif prompt is None and prompt_embeds is None:
         | 
| 348 | 
            +
                        raise ValueError(
         | 
| 349 | 
            +
                            "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
         | 
| 350 | 
            +
                        )
         | 
| 351 | 
            +
                    elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
         | 
| 352 | 
            +
                        raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
         | 
| 353 | 
            +
                    elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
         | 
| 354 | 
            +
                        raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
         | 
| 355 | 
            +
             | 
| 356 | 
            +
                    if prompt_embeds is not None and pooled_prompt_embeds is None:
         | 
| 357 | 
            +
                        raise ValueError(
         | 
| 358 | 
            +
                            "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
         | 
| 359 | 
            +
                        )
         | 
| 360 | 
            +
             | 
| 361 | 
            +
                    if max_sequence_length is not None and max_sequence_length > 512:
         | 
| 362 | 
            +
                        raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
         | 
| 363 | 
            +
             | 
| 364 | 
            +
                @staticmethod
         | 
| 365 | 
            +
                def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
         | 
| 366 | 
            +
                    latent_image_ids = torch.zeros(height // 2, width // 2, 3)
         | 
| 367 | 
            +
                    latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
         | 
| 368 | 
            +
                    latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]
         | 
| 369 | 
            +
                    latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
         | 
| 370 | 
            +
                    latent_image_ids = latent_image_ids.reshape(
         | 
| 371 | 
            +
                        latent_image_id_height * latent_image_id_width, latent_image_id_channels
         | 
| 372 | 
            +
                    )
         | 
| 373 | 
            +
                    return latent_image_ids.to(device=device, dtype=dtype)
         | 
| 374 | 
            +
             | 
| 375 | 
            +
                @staticmethod
         | 
| 376 | 
            +
                def _pack_latents(latents, batch_size, num_channels_latents, height, width):
         | 
| 377 | 
            +
                    latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
         | 
| 378 | 
            +
                    latents = latents.permute(0, 2, 4, 1, 3, 5)
         | 
| 379 | 
            +
                    latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
         | 
| 380 | 
            +
                    return latents
         | 
| 381 | 
            +
             | 
| 382 | 
            +
                @staticmethod
         | 
| 383 | 
            +
                def _unpack_latents(latents, height, width, vae_scale_factor):
         | 
| 384 | 
            +
                    batch_size, num_patches, channels = latents.shape
         | 
| 385 | 
            +
             | 
| 386 | 
            +
                    height = height // vae_scale_factor
         | 
| 387 | 
            +
                    width = width // vae_scale_factor
         | 
| 388 | 
            +
             | 
| 389 | 
            +
                    latents = latents.view(batch_size, height, width, channels // 4, 2, 2)
         | 
| 390 | 
            +
                    latents = latents.permute(0, 3, 1, 4, 2, 5)
         | 
| 391 | 
            +
             | 
| 392 | 
            +
                    latents = latents.reshape(batch_size, channels // (2 * 2), height * 2, width * 2)
         | 
| 393 | 
            +
             | 
| 394 | 
            +
                    return latents
         | 
| 395 | 
            +
             | 
| 396 | 
            +
                def enable_vae_slicing(self):
         | 
| 397 | 
            +
                    r"""
         | 
| 398 | 
            +
                    Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
         | 
| 399 | 
            +
                    compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
         | 
| 400 | 
            +
                    """
         | 
| 401 | 
            +
                    self.vae.enable_slicing()
         | 
| 402 | 
            +
             | 
| 403 | 
            +
                def disable_vae_slicing(self):
         | 
| 404 | 
            +
                    r"""
         | 
| 405 | 
            +
                    Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
         | 
| 406 | 
            +
                    computing decoding in one step.
         | 
| 407 | 
            +
                    """
         | 
| 408 | 
            +
                    self.vae.disable_slicing()
         | 
| 409 | 
            +
             | 
| 410 | 
            +
                def enable_vae_tiling(self):
         | 
| 411 | 
            +
                    r"""
         | 
| 412 | 
            +
                    Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
         | 
| 413 | 
            +
                    compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
         | 
| 414 | 
            +
                    processing larger images.
         | 
| 415 | 
            +
                    """
         | 
| 416 | 
            +
                    self.vae.enable_tiling()
         | 
| 417 | 
            +
             | 
| 418 | 
            +
                def disable_vae_tiling(self):
         | 
| 419 | 
            +
                    r"""
         | 
| 420 | 
            +
                    Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
         | 
| 421 | 
            +
                    computing decoding in one step.
         | 
| 422 | 
            +
                    """
         | 
| 423 | 
            +
                    self.vae.disable_tiling()
         | 
| 424 | 
            +
             | 
| 425 | 
            +
                def prepare_latents(
         | 
| 426 | 
            +
                        self,
         | 
| 427 | 
            +
                        batch_size,
         | 
| 428 | 
            +
                        num_channels_latents,
         | 
| 429 | 
            +
                        height,
         | 
| 430 | 
            +
                        width,
         | 
| 431 | 
            +
                        dtype,
         | 
| 432 | 
            +
                        device,
         | 
| 433 | 
            +
                        generator,
         | 
| 434 | 
            +
                        subject_image,
         | 
| 435 | 
            +
                        condition_image,
         | 
| 436 | 
            +
                        latents=None,
         | 
| 437 | 
            +
                        cond_number=1,
         | 
| 438 | 
            +
                        sub_number=1
         | 
| 439 | 
            +
                ):
         | 
| 440 | 
            +
                    height_cond = 2 * (self.cond_size // self.vae_scale_factor)
         | 
| 441 | 
            +
                    width_cond = 2 * (self.cond_size // self.vae_scale_factor)
         | 
| 442 | 
            +
                    height = 2 * (int(height) // self.vae_scale_factor)  
         | 
| 443 | 
            +
                    width = 2 * (int(width) // self.vae_scale_factor)
         | 
| 444 | 
            +
             | 
| 445 | 
            +
                    shape = (batch_size, num_channels_latents, height, width)  # 1 16 106 80
         | 
| 446 | 
            +
                    noise_latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)  
         | 
| 447 | 
            +
                    noise_latents = self._pack_latents(noise_latents, batch_size, num_channels_latents, height, width)
         | 
| 448 | 
            +
                    noise_latent_image_ids, cond_latent_image_ids = resize_position_encoding(
         | 
| 449 | 
            +
                            batch_size,
         | 
| 450 | 
            +
                            height,
         | 
| 451 | 
            +
                            width,
         | 
| 452 | 
            +
                            height_cond,
         | 
| 453 | 
            +
                            width_cond,
         | 
| 454 | 
            +
                            device,
         | 
| 455 | 
            +
                            dtype,
         | 
| 456 | 
            +
                        )
         | 
| 457 | 
            +
                    
         | 
| 458 | 
            +
                    latents_to_concat = []
         | 
| 459 | 
            +
                    latents_ids_to_concat = [noise_latent_image_ids]
         | 
| 460 | 
            +
                    
         | 
| 461 | 
            +
                    # subject
         | 
| 462 | 
            +
                    if subject_image is not None:
         | 
| 463 | 
            +
                        shape_subject = (batch_size, num_channels_latents, height_cond*sub_number, width_cond)  
         | 
| 464 | 
            +
                        subject_image = subject_image.to(device=device, dtype=dtype)
         | 
| 465 | 
            +
                        subject_image_latents = self._encode_vae_image(image=subject_image, generator=generator)
         | 
| 466 | 
            +
                        subject_latents = self._pack_latents(subject_image_latents, batch_size, num_channels_latents, height_cond*sub_number, width_cond)
         | 
| 467 | 
            +
                        mask2 = torch.zeros(shape_subject, device=device, dtype=dtype)
         | 
| 468 | 
            +
                        mask2 = self._pack_latents(mask2, batch_size, num_channels_latents, height_cond*sub_number, width_cond)
         | 
| 469 | 
            +
                        latent_subject_ids = prepare_latent_subject_ids(height_cond, width_cond, device, dtype)
         | 
| 470 | 
            +
                        latent_subject_ids[:, 1] += 64  # fixed offset
         | 
| 471 | 
            +
                        subject_latent_image_ids = torch.concat([latent_subject_ids for _ in range(sub_number)], dim=-2)
         | 
| 472 | 
            +
                        latents_to_concat.append(subject_latents)
         | 
| 473 | 
            +
                        latents_ids_to_concat.append(subject_latent_image_ids)
         | 
| 474 | 
            +
                        
         | 
| 475 | 
            +
                    # spatial
         | 
| 476 | 
            +
                    if condition_image is not None:
         | 
| 477 | 
            +
                        shape_cond = (batch_size, num_channels_latents, height_cond*cond_number, width_cond)  
         | 
| 478 | 
            +
                        condition_image = condition_image.to(device=device, dtype=dtype)
         | 
| 479 | 
            +
                        image_latents = self._encode_vae_image(image=condition_image, generator=generator)
         | 
| 480 | 
            +
                        cond_latents = self._pack_latents(image_latents, batch_size, num_channels_latents, height_cond*cond_number, width_cond)
         | 
| 481 | 
            +
                        mask3 = torch.zeros(shape_cond, device=device, dtype=dtype)
         | 
| 482 | 
            +
                        mask3 = self._pack_latents(mask3, batch_size, num_channels_latents, height_cond*cond_number, width_cond) 
         | 
| 483 | 
            +
                        cond_latent_image_ids = cond_latent_image_ids
         | 
| 484 | 
            +
                        cond_latent_image_ids = torch.concat([cond_latent_image_ids for _ in range(cond_number)], dim=-2)
         | 
| 485 | 
            +
                        latents_ids_to_concat.append(cond_latent_image_ids)
         | 
| 486 | 
            +
                        latents_to_concat.append(cond_latents)
         | 
| 487 | 
            +
             | 
| 488 | 
            +
                    cond_latents = torch.concat(latents_to_concat, dim=-2)
         | 
| 489 | 
            +
                    latent_image_ids = torch.concat(latents_ids_to_concat, dim=-2)
         | 
| 490 | 
            +
                    return cond_latents, latent_image_ids, noise_latents
         | 
| 491 | 
            +
             | 
| 492 | 
            +
                @property
         | 
| 493 | 
            +
                def guidance_scale(self):
         | 
| 494 | 
            +
                    return self._guidance_scale
         | 
| 495 | 
            +
             | 
| 496 | 
            +
                @property
         | 
| 497 | 
            +
                def joint_attention_kwargs(self):
         | 
| 498 | 
            +
                    return self._joint_attention_kwargs
         | 
| 499 | 
            +
             | 
| 500 | 
            +
                @property
         | 
| 501 | 
            +
                def num_timesteps(self):
         | 
| 502 | 
            +
                    return self._num_timesteps
         | 
| 503 | 
            +
             | 
| 504 | 
            +
                @property
         | 
| 505 | 
            +
                def interrupt(self):
         | 
| 506 | 
            +
                    return self._interrupt
         | 
| 507 | 
            +
             | 
| 508 | 
            +
                @torch.no_grad()
         | 
| 509 | 
            +
                def __call__(
         | 
| 510 | 
            +
                        self,
         | 
| 511 | 
            +
                        prompt: Union[str, List[str]] = None,
         | 
| 512 | 
            +
                        prompt_2: Optional[Union[str, List[str]]] = None,
         | 
| 513 | 
            +
                        height: Optional[int] = None,
         | 
| 514 | 
            +
                        width: Optional[int] = None,
         | 
| 515 | 
            +
                        num_inference_steps: int = 28,
         | 
| 516 | 
            +
                        timesteps: List[int] = None,
         | 
| 517 | 
            +
                        guidance_scale: float = 3.5,
         | 
| 518 | 
            +
                        num_images_per_prompt: Optional[int] = 1,
         | 
| 519 | 
            +
                        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
         | 
| 520 | 
            +
                        latents: Optional[torch.FloatTensor] = None,
         | 
| 521 | 
            +
                        prompt_embeds: Optional[torch.FloatTensor] = None,
         | 
| 522 | 
            +
                        pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
         | 
| 523 | 
            +
                        output_type: Optional[str] = "pil",
         | 
| 524 | 
            +
                        return_dict: bool = True,
         | 
| 525 | 
            +
                        joint_attention_kwargs: Optional[Dict[str, Any]] = None,
         | 
| 526 | 
            +
                        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
         | 
| 527 | 
            +
                        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
         | 
| 528 | 
            +
                        max_sequence_length: int = 512,
         | 
| 529 | 
            +
                        spatial_images=[],
         | 
| 530 | 
            +
                        subject_images=[],
         | 
| 531 | 
            +
                        cond_size=512,
         | 
| 532 | 
            +
                ):
         | 
| 533 | 
            +
             | 
| 534 | 
            +
                    height = height or self.default_sample_size * self.vae_scale_factor
         | 
| 535 | 
            +
                    width = width or self.default_sample_size * self.vae_scale_factor
         | 
| 536 | 
            +
                    self.cond_size = cond_size
         | 
| 537 | 
            +
                    
         | 
| 538 | 
            +
                    # 1. Check inputs. Raise error if not correct
         | 
| 539 | 
            +
                    self.check_inputs(
         | 
| 540 | 
            +
                        prompt,
         | 
| 541 | 
            +
                        prompt_2,
         | 
| 542 | 
            +
                        height,
         | 
| 543 | 
            +
                        width,
         | 
| 544 | 
            +
                        prompt_embeds=prompt_embeds,
         | 
| 545 | 
            +
                        pooled_prompt_embeds=pooled_prompt_embeds,
         | 
| 546 | 
            +
                        callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
         | 
| 547 | 
            +
                        max_sequence_length=max_sequence_length,
         | 
| 548 | 
            +
                    )
         | 
| 549 | 
            +
             | 
| 550 | 
            +
                    self._guidance_scale = guidance_scale
         | 
| 551 | 
            +
                    self._joint_attention_kwargs = joint_attention_kwargs
         | 
| 552 | 
            +
                    self._interrupt = False
         | 
| 553 | 
            +
                    
         | 
| 554 | 
            +
                    cond_number = len(spatial_images)
         | 
| 555 | 
            +
                    sub_number = len(subject_images)
         | 
| 556 | 
            +
                    
         | 
| 557 | 
            +
                    if sub_number > 0:
         | 
| 558 | 
            +
                        subject_image_ls = []
         | 
| 559 | 
            +
                        for subject_image in subject_images:
         | 
| 560 | 
            +
                            w, h = subject_image.size[:2]
         | 
| 561 | 
            +
                            scale = self.cond_size / max(h, w)
         | 
| 562 | 
            +
                            new_h, new_w = int(h * scale), int(w * scale)
         | 
| 563 | 
            +
                            subject_image = self.image_processor.preprocess(subject_image, height=new_h, width=new_w)
         | 
| 564 | 
            +
                            subject_image = subject_image.to(dtype=torch.float32)
         | 
| 565 | 
            +
                            pad_h = cond_size - subject_image.shape[-2]
         | 
| 566 | 
            +
                            pad_w = cond_size - subject_image.shape[-1]
         | 
| 567 | 
            +
                            subject_image = pad(
         | 
| 568 | 
            +
                                subject_image,
         | 
| 569 | 
            +
                                padding=(int(pad_w / 2), int(pad_h / 2), int(pad_w / 2), int(pad_h / 2)),
         | 
| 570 | 
            +
                                fill=0
         | 
| 571 | 
            +
                            )
         | 
| 572 | 
            +
                            subject_image_ls.append(subject_image)
         | 
| 573 | 
            +
                        subject_image = torch.concat(subject_image_ls, dim=-2)
         | 
| 574 | 
            +
                    else:
         | 
| 575 | 
            +
                        subject_image = None
         | 
| 576 | 
            +
                    
         | 
| 577 | 
            +
                    if cond_number > 0:
         | 
| 578 | 
            +
                        condition_image_ls = []
         | 
| 579 | 
            +
                        for img in spatial_images:
         | 
| 580 | 
            +
                            print(img)
         | 
| 581 | 
            +
                            condition_image = self.image_processor.preprocess(img, height=self.cond_size, width=self.cond_size)
         | 
| 582 | 
            +
                            condition_image = condition_image.to(dtype=torch.float32)
         | 
| 583 | 
            +
                            condition_image_ls.append(condition_image)
         | 
| 584 | 
            +
                        condition_image = torch.concat(condition_image_ls, dim=-2)
         | 
| 585 | 
            +
                    else:
         | 
| 586 | 
            +
                        condition_image = None
         | 
| 587 | 
            +
                    
         | 
| 588 | 
            +
                    # 2. Define call parameters
         | 
| 589 | 
            +
                    if prompt is not None and isinstance(prompt, str):
         | 
| 590 | 
            +
                        batch_size = 1
         | 
| 591 | 
            +
                    elif prompt is not None and isinstance(prompt, list):
         | 
| 592 | 
            +
                        batch_size = len(prompt)
         | 
| 593 | 
            +
                    else:
         | 
| 594 | 
            +
                        batch_size = prompt_embeds.shape[0]
         | 
| 595 | 
            +
             | 
| 596 | 
            +
                    device = self._execution_device
         | 
| 597 | 
            +
             | 
| 598 | 
            +
                    lora_scale = (
         | 
| 599 | 
            +
                        self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
         | 
| 600 | 
            +
                    )
         | 
| 601 | 
            +
                    (
         | 
| 602 | 
            +
                        prompt_embeds,
         | 
| 603 | 
            +
                        pooled_prompt_embeds,
         | 
| 604 | 
            +
                        text_ids,
         | 
| 605 | 
            +
                    ) = self.encode_prompt(
         | 
| 606 | 
            +
                        prompt=prompt,
         | 
| 607 | 
            +
                        prompt_2=prompt_2,
         | 
| 608 | 
            +
                        prompt_embeds=prompt_embeds,
         | 
| 609 | 
            +
                        pooled_prompt_embeds=pooled_prompt_embeds,
         | 
| 610 | 
            +
                        device=device,
         | 
| 611 | 
            +
                        num_images_per_prompt=num_images_per_prompt,
         | 
| 612 | 
            +
                        max_sequence_length=max_sequence_length,
         | 
| 613 | 
            +
                        lora_scale=lora_scale,
         | 
| 614 | 
            +
                    )
         | 
| 615 | 
            +
             | 
| 616 | 
            +
                    # 4. Prepare latent variables
         | 
| 617 | 
            +
                    num_channels_latents = self.transformer.config.in_channels // 4  # 16
         | 
| 618 | 
            +
                    cond_latents, latent_image_ids, noise_latents = self.prepare_latents(
         | 
| 619 | 
            +
                        batch_size * num_images_per_prompt,
         | 
| 620 | 
            +
                        num_channels_latents,
         | 
| 621 | 
            +
                        height,
         | 
| 622 | 
            +
                        width,
         | 
| 623 | 
            +
                        prompt_embeds.dtype,
         | 
| 624 | 
            +
                        device,
         | 
| 625 | 
            +
                        generator,
         | 
| 626 | 
            +
                        subject_image,
         | 
| 627 | 
            +
                        condition_image,
         | 
| 628 | 
            +
                        latents,
         | 
| 629 | 
            +
                        cond_number,
         | 
| 630 | 
            +
                        sub_number
         | 
| 631 | 
            +
                    )
         | 
| 632 | 
            +
                    latents = noise_latents
         | 
| 633 | 
            +
                    # 5. Prepare timesteps
         | 
| 634 | 
            +
                    sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
         | 
| 635 | 
            +
                    image_seq_len = latents.shape[1]
         | 
| 636 | 
            +
                    mu = calculate_shift(
         | 
| 637 | 
            +
                        image_seq_len,
         | 
| 638 | 
            +
                        self.scheduler.config.base_image_seq_len,
         | 
| 639 | 
            +
                        self.scheduler.config.max_image_seq_len,
         | 
| 640 | 
            +
                        self.scheduler.config.base_shift,
         | 
| 641 | 
            +
                        self.scheduler.config.max_shift,
         | 
| 642 | 
            +
                    )
         | 
| 643 | 
            +
                    timesteps, num_inference_steps = retrieve_timesteps(
         | 
| 644 | 
            +
                        self.scheduler,
         | 
| 645 | 
            +
                        num_inference_steps,
         | 
| 646 | 
            +
                        device,
         | 
| 647 | 
            +
                        timesteps,
         | 
| 648 | 
            +
                        sigmas,
         | 
| 649 | 
            +
                        mu=mu,
         | 
| 650 | 
            +
                    )
         | 
| 651 | 
            +
                    num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
         | 
| 652 | 
            +
                    self._num_timesteps = len(timesteps)
         | 
| 653 | 
            +
             | 
| 654 | 
            +
                    # handle guidance
         | 
| 655 | 
            +
                    if self.transformer.config.guidance_embeds:
         | 
| 656 | 
            +
                        guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
         | 
| 657 | 
            +
                        guidance = guidance.expand(latents.shape[0])
         | 
| 658 | 
            +
                    else:
         | 
| 659 | 
            +
                        guidance = None
         | 
| 660 | 
            +
             | 
| 661 | 
            +
                    ## Caching conditions
         | 
| 662 | 
            +
                    # clean the cache
         | 
| 663 | 
            +
                    try:
         | 
| 664 | 
            +
                        for name, attn_processor in self.transformer.attn_processors.items():
         | 
| 665 | 
            +
                            attn_processor.bank_kv.clear()
         | 
| 666 | 
            +
                    except:
         | 
| 667 | 
            +
                        pass
         | 
| 668 | 
            +
                    # cache with warmup latents
         | 
| 669 | 
            +
                    t = torch.tensor([timesteps[0]], device=device)
         | 
| 670 | 
            +
                    timestep = t.expand(cond_latents.shape[0]).to(latents.dtype)
         | 
| 671 | 
            +
                    warmup_image_ids = latent_image_ids[latents.shape[1]:, :]
         | 
| 672 | 
            +
                    _ = self.transformer(
         | 
| 673 | 
            +
                                hidden_states=cond_latents,  
         | 
| 674 | 
            +
                                timestep=torch.ones_like(timestep) * 0,
         | 
| 675 | 
            +
                                guidance=guidance,
         | 
| 676 | 
            +
                                pooled_projections=pooled_prompt_embeds,
         | 
| 677 | 
            +
                                encoder_hidden_states=prompt_embeds,
         | 
| 678 | 
            +
                                txt_ids=text_ids,
         | 
| 679 | 
            +
                                img_ids=warmup_image_ids,
         | 
| 680 | 
            +
                                joint_attention_kwargs=self.joint_attention_kwargs,
         | 
| 681 | 
            +
                                return_dict=False,
         | 
| 682 | 
            +
                            )[0]
         | 
| 683 | 
            +
                    
         | 
| 684 | 
            +
                    del cond_latents, spatial_images, condition_image, condition_image_ls, img, _
         | 
| 685 | 
            +
                    torch.cuda.empty_cache()
         | 
| 686 | 
            +
             | 
| 687 | 
            +
                    # 6. Denoising loop
         | 
| 688 | 
            +
                    with self.progress_bar(total=num_inference_steps) as progress_bar:
         | 
| 689 | 
            +
                        for i, t in enumerate(timesteps):
         | 
| 690 | 
            +
                            if self.interrupt:
         | 
| 691 | 
            +
                                continue
         | 
| 692 | 
            +
             | 
| 693 | 
            +
                            # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
         | 
| 694 | 
            +
                            timestep = t.expand(latents.shape[0]).to(latents.dtype)
         | 
| 695 | 
            +
                            noise_pred = self.transformer(
         | 
| 696 | 
            +
                                hidden_states=latents,
         | 
| 697 | 
            +
                                timestep=timestep / 1000,
         | 
| 698 | 
            +
                                guidance=guidance,
         | 
| 699 | 
            +
                                pooled_projections=pooled_prompt_embeds,
         | 
| 700 | 
            +
                                encoder_hidden_states=prompt_embeds,
         | 
| 701 | 
            +
                                txt_ids=text_ids,
         | 
| 702 | 
            +
                                img_ids=latent_image_ids,
         | 
| 703 | 
            +
                                joint_attention_kwargs=self.joint_attention_kwargs,
         | 
| 704 | 
            +
                                return_dict=False,
         | 
| 705 | 
            +
                            )[0]
         | 
| 706 | 
            +
             | 
| 707 | 
            +
                            # compute the previous noisy sample x_t -> x_t-1
         | 
| 708 | 
            +
                            latents_dtype = latents.dtype
         | 
| 709 | 
            +
                            latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
         | 
| 710 | 
            +
             | 
| 711 | 
            +
                            if latents.dtype != latents_dtype:
         | 
| 712 | 
            +
                                if torch.backends.mps.is_available():
         | 
| 713 | 
            +
                                    # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
         | 
| 714 | 
            +
                                    latents = latents.to(latents_dtype)
         | 
| 715 | 
            +
             | 
| 716 | 
            +
                            if callback_on_step_end is not None:
         | 
| 717 | 
            +
                                callback_kwargs = {}
         | 
| 718 | 
            +
                                for k in callback_on_step_end_tensor_inputs:
         | 
| 719 | 
            +
                                    callback_kwargs[k] = locals()[k]
         | 
| 720 | 
            +
                                callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
         | 
| 721 | 
            +
             | 
| 722 | 
            +
                                latents = callback_outputs.pop("latents", latents)
         | 
| 723 | 
            +
                                prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
         | 
| 724 | 
            +
             | 
| 725 | 
            +
                            # call the callback, if provided
         | 
| 726 | 
            +
                            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
         | 
| 727 | 
            +
                                progress_bar.update()
         | 
| 728 | 
            +
             | 
| 729 | 
            +
                            if XLA_AVAILABLE:
         | 
| 730 | 
            +
                                xm.mark_step()
         | 
| 731 | 
            +
             | 
| 732 | 
            +
                    if output_type == "latent":
         | 
| 733 | 
            +
                        image = latents
         | 
| 734 | 
            +
                    else:
         | 
| 735 | 
            +
                        latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
         | 
| 736 | 
            +
                        latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
         | 
| 737 | 
            +
                        image = self.vae.decode(latents.to(dtype=self.vae.dtype), return_dict=False)[0]
         | 
| 738 | 
            +
                        image = self.image_processor.postprocess(image, output_type=output_type)
         | 
| 739 | 
            +
             | 
| 740 | 
            +
                    # Offload all models
         | 
| 741 | 
            +
                    self.maybe_free_model_hooks()
         | 
| 742 | 
            +
             | 
| 743 | 
            +
                    if not return_dict:
         | 
| 744 | 
            +
                        return (image,)
         | 
| 745 | 
            +
             | 
| 746 | 
            +
                    return FluxPipelineOutput(images=image)
         | 
    	
        test_imgs/00.png
    ADDED
    
    |   | 
    	
        test_imgs/01.png
    ADDED
    
    |   | 
    	
        test_imgs/02.png
    ADDED
    
    |   | 
    	
        test_imgs/03.png
    ADDED
    
    |   | 
    	
        test_imgs/04.png
    ADDED
    
    |   |