File size: 6,491 Bytes
f3fac44
716a943
 
 
 
f3fac44
716a943
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import gradio as gr
import json
from pathlib import Path
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Default system prompt for the chat interface
DEFAULT_SYSTEM_PROMPT = """You are DeepThink, a helpful and knowledgeable AI assistant. You aim to provide accurate, 
informative, and engaging responses while maintaining a professional and friendly demeanor."""

class ChatInterface:
    """Main chat interface handler with memory and parameter management"""
    
    def __init__(self):
        """Initialize the chat interface with default settings"""
        self.model_name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B"
        self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
        self.model = AutoModelForCausalLM.from_pretrained(self.model_name)
        self.chat_history = []
        self.system_prompt = DEFAULT_SYSTEM_PROMPT
        
    def load_context_from_json(self, file_obj):
        """Load additional context from a JSON file"""
        if file_obj is None:
            return "No file uploaded", self.system_prompt
        
        try:
            content = json.load(file_obj)
            if "system_prompt" in content:
                self.system_prompt = content["system_prompt"]
            return "Context loaded successfully!", self.system_prompt
        except Exception as e:
            return f"Error loading context: {str(e)}", self.system_prompt

    def generate_response(self, message, temperature, max_length, top_p, presence_penalty, frequency_penalty):
        """Generate AI response with given parameters"""
        # Format the input with system prompt and chat history
        conversation = f"System: {self.system_prompt}\n\n"
        for msg in self.chat_history:
            conversation += f"Human: {msg[0]}\nAssistant: {msg[1]}\n\n"
        conversation += f"Human: {message}\nAssistant:"

        # Generate response with specified parameters
        inputs = self.tokenizer(conversation, return_tensors="pt")
        outputs = self.model.generate(
            inputs["input_ids"],
            max_length=max_length,
            temperature=temperature,
            top_p=top_p,
            presence_penalty=presence_penalty,
            frequency_penalty=frequency_penalty,
        )
        response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
        
        # Extract assistant's response and update chat history
        response = response.split("Assistant:")[-1].strip()
        self.chat_history.append((message, response))
        
        return response, self.format_chat_history()
    
    def format_chat_history(self):
        """Format chat history for display"""
        return [(f"User: {msg[0]}", f"Assistant: {msg[1]}") for msg in self.chat_history]
    
    def clear_history(self):
        """Clear the chat history"""
        self.chat_history = []
        return self.format_chat_history()

# Initialize the chat interface
chat_interface = ChatInterface()

# Create the Gradio interface
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    with gr.Row():
        with gr.Column(scale=2):
            # Main chat interface
            chatbot = gr.Chatbot(
                label="Chat History",
                height=600,
                show_label=True,
            )
            
            with gr.Row():
                message = gr.Textbox(
                    label="Your message",
                    placeholder="Type your message here...",
                    lines=2
                )
                submit_btn = gr.Button("Send", variant="primary")
        
        with gr.Column(scale=1):
            # System settings and parameters
            with gr.Group(label="System Configuration"):
                system_prompt = gr.Textbox(
                    label="System Prompt",
                    value=DEFAULT_SYSTEM_PROMPT,
                    lines=4
                )
                context_file = gr.File(
                    label="Upload Context JSON",
                    file_types=[".json"]
                )
                upload_button = gr.Button("Load Context")
                context_status = gr.Textbox(label="Context Status", interactive=False)
            
            with gr.Group(label="Generation Parameters"):
                temperature = gr.Slider(
                    minimum=0.1,
                    maximum=2.0,
                    value=0.7,
                    step=0.1,
                    label="Temperature"
                )
                max_length = gr.Slider(
                    minimum=50,
                    maximum=2000,
                    value=500,
                    step=50,
                    label="Max Length"
                )
                top_p = gr.Slider(
                    minimum=0.1,
                    maximum=1.0,
                    value=0.9,
                    step=0.1,
                    label="Top P"
                )
                presence_penalty = gr.Slider(
                    minimum=0.0,
                    maximum=2.0,
                    value=0.0,
                    step=0.1,
                    label="Presence Penalty"
                )
                frequency_penalty = gr.Slider(
                    minimum=0.0,
                    maximum=2.0,
                    value=0.0,
                    step=0.1,
                    label="Frequency Penalty"
                )
            
            clear_btn = gr.Button("Clear Chat History")

    # Event handlers
    def submit_message(message, temperature, max_length, top_p, presence_penalty, frequency_penalty):
        response, history = chat_interface.generate_response(
            message, temperature, max_length, top_p, presence_penalty, frequency_penalty
        )
        return "", history

    submit_btn.click(
        submit_message,
        inputs=[message, temperature, max_length, top_p, presence_penalty, frequency_penalty],
        outputs=[message, chatbot]
    )
    
    message.submit(
        submit_message,
        inputs=[message, temperature, max_length, top_p, presence_penalty, frequency_penalty],
        outputs=[message, chatbot]
    )
    
    clear_btn.click(
        lambda: (chat_interface.clear_history(), ""),
        outputs=[chatbot, message]
    )
    
    upload_button.click(
        chat_interface.load_context_from_json,
        inputs=[context_file],
        outputs=[context_status, system_prompt]
    )

# Launch the interface
demo.launch()