Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -27,7 +27,7 @@ def inference(input_image):
|
|
27 |
transforms.Resize(256),
|
28 |
transforms.CenterCrop(224),
|
29 |
transforms.ToTensor(),
|
30 |
-
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
31 |
])
|
32 |
input_tensor = preprocess(input_image)
|
33 |
input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model
|
@@ -42,7 +42,7 @@ def inference(input_image):
|
|
42 |
with torch.no_grad():
|
43 |
output = model(input_batch)
|
44 |
# The output has unnormalized scores. To get probabilities, you can run a softmax on it.
|
45 |
-
probabilities = torch.nn.functional.softmax(output[0], dim=
|
46 |
|
47 |
# Read the categories
|
48 |
with open("artist_classes.txt", "r") as f:
|
@@ -61,14 +61,13 @@ def inference(input_image):
|
|
61 |
top5_prob, top5_catid = torch.topk(probabilities, 6)
|
62 |
result = {}
|
63 |
for i in range(top5_prob.size(0)):
|
64 |
-
result[categories[top5_catid[i]]] = top5_prob[i].item()
|
65 |
-
print(result)
|
66 |
return result
|
67 |
|
68 |
inputs = gr.Image(type='pil')
|
69 |
outputs = gr.Label(type="confidences",num_top_classes=5)
|
70 |
|
71 |
-
title = "
|
72 |
description = "Gradio demo for MOBILENET V2, Efficient networks optimized for speed and memory, with residual blocks. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
|
73 |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1801.04381'>MobileNetV2: Inverted Residuals and Linear Bottlenecks</a> | <a href='https://github.com/pytorch/vision/blob/master/torchvision/models/mobilenet.py'>Github Repo</a></p>"
|
74 |
|
|
|
27 |
transforms.Resize(256),
|
28 |
transforms.CenterCrop(224),
|
29 |
transforms.ToTensor(),
|
30 |
+
#transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
31 |
])
|
32 |
input_tensor = preprocess(input_image)
|
33 |
input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model
|
|
|
42 |
with torch.no_grad():
|
43 |
output = model(input_batch)
|
44 |
# The output has unnormalized scores. To get probabilities, you can run a softmax on it.
|
45 |
+
probabilities = torch.nn.functional.softmax(output[0], dim=0)
|
46 |
|
47 |
# Read the categories
|
48 |
with open("artist_classes.txt", "r") as f:
|
|
|
61 |
top5_prob, top5_catid = torch.topk(probabilities, 6)
|
62 |
result = {}
|
63 |
for i in range(top5_prob.size(0)):
|
64 |
+
result[categories[top5_catid[i],item()]] = top5_prob[i].item()
|
|
|
65 |
return result
|
66 |
|
67 |
inputs = gr.Image(type='pil')
|
68 |
outputs = gr.Label(type="confidences",num_top_classes=5)
|
69 |
|
70 |
+
title = "Artist Classifier"
|
71 |
description = "Gradio demo for MOBILENET V2, Efficient networks optimized for speed and memory, with residual blocks. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
|
72 |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1801.04381'>MobileNetV2: Inverted Residuals and Linear Bottlenecks</a> | <a href='https://github.com/pytorch/vision/blob/master/torchvision/models/mobilenet.py'>Github Repo</a></p>"
|
73 |
|