Spaces:
Sleeping
Sleeping
File size: 6,060 Bytes
aa3591b a231ba0 aa3591b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import Sequential
from tensorflow.keras.layers import Dense, Flatten
from tensorflow.keras import layers
import matplotlib.pyplot as plt
import gradio as gr
import numpy as np
import pandas as pd
from PIL import Image as im
import PIL
#%matplotlib inline
num_classes = 10
input_shape = (28, 28, 1)
objt=tf.keras.datasets.mnist
(X_train, y_train), (X_test,y_test)=objt.load_data()
# X_train = X_train.astype("float32") / 255
# X_test = X_test.astype("float32") / 255
# # Make sure images have shape (28, 28, 1)
# X_train = np.expand_dims(X_train, -1)
# X_test = np.expand_dims(X_test, -1)
# print("x_train shape:", X_train.shape)
# print(X_train.shape[0], "train samples")
# print(X_test.shape[0], "test samples")
# # convert class vectors to binary class matrices
# y_train = keras.utils.to_categorical(y_train, num_classes)
# y_test = keras.utils.to_categorical(y_test, num_classes)
# X_new=np.concatenate((X_train, X_test))
# y_new=np.concatenate((y_train, y_test))
# print(X_train.shape)
# print(X_new.shape)
# print(y_new.shape)
# print(y_train)
# model = keras.Sequential(
# [
# keras.Input(shape=input_shape),
# layers.Conv2D(32, kernel_size=(3, 3), activation="relu"),
# layers.MaxPooling2D(pool_size=(2, 2)),
# layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),
# layers.MaxPooling2D(pool_size=(2, 2)),
# layers.Flatten(),
# layers.Dropout(0.5),
# layers.Dense(num_classes, activation="softmax"),
# ]
# )
# model.summary()
# batch_size = 128
# epochs = 15
# model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
# model.fit(X_new, y_new, batch_size=batch_size, epochs=epochs, validation_split=0.1)
# model.save("keras_digit_test_include.h5")
# score = model.evaluate(X_test, y_test, verbose=0)
# print("Test loss:", score[0])
# print("Test accuracy:", score[1])
# loaded_model = keras.models.load_model('keras_digit_accurate.h5')
# score = loaded_model.evaluate(X_test, y_test, verbose=0)
# print("Test loss:", score[0])
# print("Test accuracy:", score[1])
#................................................................................................
# for i in range(9):
# plt.subplot(330+1+i)
# plt.imshow(X_train[i])
# plt.show()
# X_train=X_train/255.0
# X_test=X_test/255.0
# model=tf.keras.models.Sequential([Flatten(input_shape=(28,28)),
# Dense(650,activation='relu'),
# Dense(450,activation='relu'),
# Dense(250,activation='relu'),
# Dense(150,activation='relu'),
# Dense(10,activation=tf.nn.softmax)])
# model.compile(optimizer='adam',
# loss='sparse_categorical_crossentropy',
# metrics=['accuracy'])
# model.fit(X_train,y_train, epochs=10)
# model.save("keras_digit_temp.h5")
# test=X_test[0].reshape(-1,28,28)
# predicted=model.predict(test)
# print(predicted)
#count=0
def predict_digit(img):
if img is not None:
loaded_model = keras.models.load_model('keras_digit_test_include.h5')
#img_data = im.fromarray(img)
#img_data.save(f"image1.jpg")
#count=count+1
print(img)
img_3d=img['background'].reshape(-1,28,28)
print(img_3d)
img_resized=img/255.0
pred_prob=loaded_model.predict(img_resized)
pred_prob=pred_prob*100
print((pred_prob))
simple = pd.DataFrame(
{
"a": ["0", "1", "2", "3", "4", "5", "6", "7", "8","9"],
"b": pred_prob[0],
}
)
predicted_val=np.argmax(pred_prob)
return int(predicted_val), gr.BarPlot.update(
simple,
x="a",
y="b",
x_title="Digits",
y_title="Identification Probabilities",
title="Identification Probability",
tooltip=["a", "b"],
vertical=False,
y_lim=[0, 100],
)
else:
simple_empty = pd.DataFrame(
{
"a": ["0", "1", "2", "3", "4", "5", "6", "7", "8","9"],
"b": [0,0,0,0,0,0,0,0,0,0],
}
)
return " ", gr.BarPlot.update(
simple_empty,
x="a",
y="b",
x_title="Digits",
y_title="Identification Probabilities",
title="Identification Probability",
tooltip=["a", "b"],
vertical=False,
y_lim=[0, 100],
)
# iface=gr.Interface(prdict_digit, inputs='sketchpad', outputs=['label', gr.Slider(0,100, label='Probably 0'), gr.Slider(0,100, label='Probably 1')] ).launch()
# iface.launch(debug='true')
css='''
#title_head{
text-align: center;
text-weight: bold;
text-size:30px;
}
#name_head{
text-align: center;
}
'''
with gr.Blocks(css=css) as demo:
with gr.Row():
with gr.Column():
gr.Markdown("<h1>Digit Identifier</h1>", elem_id='title_head')
gr.Markdown("<h2>Cyperts Project</h2>", elem_id="name_head")
with gr.Row():
with gr.Column():
with gr.Row():
skch=gr.Sketchpad()
with gr.Row():
with gr.Column():
clear=gr.ClearButton(skch)
with gr.Column():
btn=gr.Button("Identify")
with gr.Column():
gr.Markdown("Identified digit")
label=gr.Label("")
gr.Markdown("Other possible values")
bar = gr.BarPlot()
btn.click(predict_digit,inputs=skch,outputs=[label,bar])
demo.launch(debug=True)
|