Spaces:
Runtime error
Runtime error
app.py
Browse files
app.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
from transformers import AutoModelForCausalLM, AutoProcessor
|
5 |
+
|
6 |
+
# Clone the model if not already present
|
7 |
+
if not os.path.exists("VideoLLaMA3-7B"):
|
8 |
+
os.system("apt-get update && apt-get install -y git git-lfs && git lfs install")
|
9 |
+
os.system("git clone https://huggingface.co/DAMO-NLP-SG/VideoLLaMA3-7B")
|
10 |
+
|
11 |
+
# Load model and processor from the local clone
|
12 |
+
model_path = "./VideoLLaMA3-7B"
|
13 |
+
|
14 |
+
model = AutoModelForCausalLM.from_pretrained(
|
15 |
+
model_path,
|
16 |
+
trust_remote_code=True,
|
17 |
+
device_map="auto",
|
18 |
+
torch_dtype=torch.bfloat16,
|
19 |
+
attn_implementation="flash_attention_2",
|
20 |
+
)
|
21 |
+
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
|
22 |
+
|
23 |
+
def describe_video(video, question):
|
24 |
+
conversation = [
|
25 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
26 |
+
{
|
27 |
+
"role": "user",
|
28 |
+
"content": [
|
29 |
+
{"type": "video", "video": {"video_path": video, "fps": 1, "max_frames": 128}},
|
30 |
+
{"type": "text", "text": question},
|
31 |
+
]
|
32 |
+
},
|
33 |
+
]
|
34 |
+
inputs = processor(conversation=conversation, return_tensors="pt")
|
35 |
+
inputs = {k: v.cuda() if isinstance(v, torch.Tensor) else v for k, v in inputs.items()}
|
36 |
+
if "pixel_values" in inputs:
|
37 |
+
inputs["pixel_values"] = inputs["pixel_values"].to(torch.bfloat16)
|
38 |
+
output_ids = model.generate(**inputs, max_new_tokens=128)
|
39 |
+
return processor.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
|
40 |
+
|
41 |
+
# Gradio UI
|
42 |
+
demo = gr.Interface(
|
43 |
+
fn=describe_video,
|
44 |
+
inputs=[
|
45 |
+
gr.Video(label="Upload a video"),
|
46 |
+
gr.Textbox(label="Question", value="Describe this video in detail."),
|
47 |
+
],
|
48 |
+
outputs=gr.Textbox(label="Response"),
|
49 |
+
)
|
50 |
+
|
51 |
+
demo.launch()
|