Spaces:
Running
Running
Clement Vachet
commited on
Commit
·
c8a57bb
1
Parent(s):
b58c566
docs: add documentation for AWS deployment
Browse files
README.md
CHANGED
@@ -14,34 +14,103 @@ short_description: Object detection Lambda
|
|
14 |
|
15 |
<b>Aim: AI-driven object detection task</b>
|
16 |
- Front-end: user interface via Gradio library
|
17 |
-
- Back-end: use of AWS Lambda function to run ML models
|
18 |
|
19 |
## Local development
|
20 |
|
21 |
-
### User interface
|
22 |
-
Use of Gradio library for web interface
|
23 |
-
|
24 |
-
Command line:
|
25 |
-
> python3 app.py
|
26 |
-
|
27 |
-
<b>Note:</b> The Gradio app should now be accessible at http://localhost:7860
|
28 |
-
|
29 |
|
30 |
-
### Building the docker image
|
31 |
|
32 |
bash
|
33 |
> docker build -t object-detection-lambda .
|
34 |
|
35 |
-
### Running the docker container locally
|
36 |
|
37 |
bash
|
38 |
|
39 |
> docker run --name object-detection-lambda-cont -p 8080:8080 object-detection-lambda
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
###
|
43 |
|
44 |
Example of a prediction request
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
python
|
47 |
-
> python3 inference_api.py
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
<b>Aim: AI-driven object detection task</b>
|
16 |
- Front-end: user interface via Gradio library
|
17 |
+
- Back-end: use of AWS Lambda function to run deployed ML models
|
18 |
|
19 |
## Local development
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
### 1. Building the docker image
|
23 |
|
24 |
bash
|
25 |
> docker build -t object-detection-lambda .
|
26 |
|
27 |
+
### 2. Running the docker container locally
|
28 |
|
29 |
bash
|
30 |
|
31 |
> docker run --name object-detection-lambda-cont -p 8080:8080 object-detection-lambda
|
32 |
|
33 |
+
### 3. Execution via user interface
|
34 |
+
Use of Gradio library for web interface
|
35 |
+
|
36 |
+
<b>Note:</b> The environment variable ```AWS_API``` should point to the local container
|
37 |
+
> export AWS_API=http://localhost:8080
|
38 |
+
|
39 |
+
Command line for execution:
|
40 |
+
> python3 app.py
|
41 |
+
|
42 |
+
The Gradio web application should now be accessible at http://localhost:7860
|
43 |
+
|
44 |
|
45 |
+
### 4. Execution via command line:
|
46 |
|
47 |
Example of a prediction request
|
48 |
|
49 |
+
bash
|
50 |
+
> encoded_image=$(base64 -i ./tests/data/boats.jpg)
|
51 |
+
|
52 |
+
> curl -X POST "http://localhost:8080/2015-03-31/functions/function/invocations" \
|
53 |
+
> -H "Content-Type: application/json" \
|
54 |
+
> -d '{"body": "'"$encoded_image"'", "isBase64Encoded": true, "model":"yolos-small"}'
|
55 |
+
|
56 |
python
|
57 |
+
> python3 inference_api.py \
|
58 |
+
> --api http://localhost:8080/2015-03-31/functions/function/invocations \
|
59 |
+
> --file ./tests/data/boats.jpg \
|
60 |
+
> --model yolos-small
|
61 |
+
|
62 |
+
|
63 |
+
## Deployment to AWS
|
64 |
+
|
65 |
+
### Pushing the docker container to AWS ECR
|
66 |
+
|
67 |
+
Steps:
|
68 |
+
- Create new ECR Repository via aws console
|
69 |
+
|
70 |
+
Example: ```object-detection-lambda```
|
71 |
+
|
72 |
+
|
73 |
+
- Optional for aws cli configuration (to run above commands):
|
74 |
+
> aws configure
|
75 |
+
|
76 |
+
- Authenticate Docker client to the Amazon ECR registry
|
77 |
+
> aws ecr get-login-password --region <aws_region> | docker login --username AWS --password-stdin <aws_account_id>.dkr.ecr.<aws_region>.amazonaws.com
|
78 |
+
|
79 |
+
- Tag local docker image with the Amazon ECR registry and repository
|
80 |
+
> docker tag object-detection-lambda:latest <aws_account_id>.dkr.ecr.<aws_region>.amazonaws.com/object-detection-lambda:latest
|
81 |
+
|
82 |
+
- Push docker image to ECR
|
83 |
+
> docker push <aws_account_id>.dkr.ecr.<aws_region>.amazonaws.com/object-detection-lambda:latest
|
84 |
+
|
85 |
+
[Link to AWS Documention](https://docs.aws.amazon.com/AmazonECR/latest/userguide/docker-push-ecr-image.html)
|
86 |
+
|
87 |
+
### Creating and testing a Lambda function
|
88 |
+
|
89 |
+
<b>Steps</b>:
|
90 |
+
- Create function from container image
|
91 |
+
|
92 |
+
Example name: ```object-detection```
|
93 |
+
|
94 |
+
- Notes: the API endpoint will use the ```lambda_function.py``` file and ```lambda_hander``` function
|
95 |
+
- Test the lambda via the AWS console
|
96 |
+
|
97 |
+
|
98 |
+
Advanced notes:
|
99 |
+
- Steps to update the Lambda function with latest container via aws cli:
|
100 |
+
> aws lambda update-function-code --function-name object-detection --image-uri <aws_account_id>.dkr.ecr.<aws_region>.amazonaws.com/object-detection-lambda:latest
|
101 |
+
|
102 |
+
|
103 |
+
### Creating a REST API via API Gateway
|
104 |
+
|
105 |
+
|
106 |
+
<b>Steps</b>:
|
107 |
+
- Create a new ```Rest API``` (e.g. ```object-detection-api```)
|
108 |
+
- Add a new resource to the API (e.g. ```/detect```)
|
109 |
+
- Add a ```POST``` method to the resource
|
110 |
+
- Integrate the Lambda function to the API
|
111 |
+
- Notes: currently using proxy integration option unchecked
|
112 |
+
- Deploy API with a specific stage (e.g. ```dev``` stage)
|
113 |
+
|
114 |
+
Example AWS API Endpoint:
|
115 |
+
```https://<api_id>.execute-api.<aws_region>.amazonaws.com/dev/detect```
|
116 |
+
|