Spaces:
Sleeping
Sleeping
| """ | |
| IRIS Classification - class definition | |
| """ | |
| import os | |
| import numpy as np | |
| import pandas as pd | |
| import joblib | |
| from sklearn.tree import DecisionTreeClassifier | |
| from sklearn.datasets import load_iris | |
| from sklearn.model_selection import train_test_split | |
| class Classifier: | |
| """Classifier class - ML training and testing""" | |
| def __init__(self): | |
| pass | |
| def train_and_save(self): | |
| """ML training and saving""" | |
| print("\nIRIS model training...") | |
| iris = load_iris() | |
| cart = DecisionTreeClassifier(max_depth=3) | |
| x_train, x_test, y_train, y_test = train_test_split( | |
| iris.data, iris.target, test_size=0.1, random_state=42 | |
| ) | |
| model = cart.fit(x_train, y_train) | |
| print(f"Model score: {cart.score(x_train, y_train):.3f}") | |
| print(f"Test Accuracy: {cart.score(x_test, y_test):.3f}") | |
| current_dir = os.path.dirname(os.path.abspath(__file__)) | |
| parent_dir = os.path.dirname(current_dir) | |
| test_data_csv_path = os.path.join(parent_dir, "data", "test_data.csv") | |
| pd.concat([pd.DataFrame(x_test), pd.DataFrame(y_test, columns=["4"])], axis=1).to_csv( | |
| test_data_csv_path, index=False | |
| ) | |
| model_path = os.path.join(parent_dir, "models", "model.pkl") | |
| joblib.dump(model, model_path) | |
| print(f"Model saved to {model_path}") | |
| def load_and_test(self, data): | |
| "ML loading and testing" | |
| print("\nIRIS model prediction...") | |
| current_dir = os.path.dirname(os.path.abspath(__file__)) | |
| parent_dir = os.path.dirname(current_dir) | |
| model_path = os.path.join(parent_dir, "models", "model.pkl") | |
| model = joblib.load(model_path) | |
| features = np.array(data) | |
| if len(features.shape) == 1: | |
| features = features.reshape(1, -1) | |
| if features.shape[-1] != 4: | |
| raise ValueError("Expected 4 features per input.") | |
| # Predict the class | |
| predictions = model.predict(features).tolist() | |
| probabilities = model.predict_proba(features).tolist() | |
| # Map predictions to class labels | |
| iris_types = {0: "setosa", 1: "versicolor", 2: "virginica"} | |
| prediction_labels = [iris_types[pred] for pred in predictions] | |
| return {"predictions": prediction_labels, "probabilities": probabilities} | |