Spaces:
Runtime error
Runtime error
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # All rights reserved. | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| # -------------------------------------------------------- | |
| # References: | |
| # DeiT: https://github.com/facebookresearch/deit | |
| # BEiT: https://github.com/microsoft/unilm/tree/master/beit | |
| # -------------------------------------------------------- | |
| import builtins | |
| import datetime | |
| import os | |
| import glob | |
| import time | |
| from collections import defaultdict, deque | |
| from pathlib import Path | |
| import subprocess | |
| import torch | |
| import torch.distributed as dist | |
| from torch import inf | |
| from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler | |
| from torch.distributed.fsdp import ( | |
| FullyShardedDataParallel as FSDP, | |
| StateDictType, | |
| FullStateDictConfig, | |
| ) | |
| from torch.distributed._shard.api import load_with_process_group | |
| from fairscale.nn.model_parallel import initialize as fs_init | |
| from types import TracebackType | |
| from typing import Any, Optional | |
| import torch | |
| import torch.nn as nn | |
| class SmoothedValue(object): | |
| """Track a series of values and provide access to smoothed values over a | |
| window or the global series average. | |
| """ | |
| def __init__(self, window_size=20, fmt=None): | |
| if fmt is None: | |
| fmt = "{median:.4f} ({global_avg:.4f})" | |
| self.deque = deque(maxlen=window_size) | |
| self.total = 0.0 | |
| self.count = 0 | |
| self.fmt = fmt | |
| def update(self, value, n=1): | |
| self.deque.append(value) | |
| self.count += n | |
| self.total += value * n | |
| def synchronize_between_processes(self): | |
| """ | |
| Warning: does not synchronize the deque! | |
| """ | |
| if not is_dist_avail_and_initialized(): | |
| return | |
| t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda') | |
| dist.barrier() | |
| dist.all_reduce(t) | |
| t = t.tolist() | |
| self.count = int(t[0]) | |
| self.total = t[1] | |
| def median(self): | |
| d = torch.tensor(list(self.deque)) | |
| return d.median().item() | |
| def avg(self): | |
| d = torch.tensor(list(self.deque), dtype=torch.float32) | |
| return d.mean().item() | |
| def global_avg(self): | |
| return self.total / self.count | |
| def max(self): | |
| return max(self.deque) | |
| def value(self): | |
| return self.deque[-1] | |
| def __str__(self): | |
| return self.fmt.format( | |
| median=self.median, | |
| avg=self.avg, | |
| global_avg=self.global_avg, | |
| max=self.max, | |
| value=self.value) | |
| class MetricLogger(object): | |
| def __init__(self, delimiter="\t"): | |
| self.meters = defaultdict(SmoothedValue) | |
| self.delimiter = delimiter | |
| def update(self, **kwargs): | |
| for k, v in kwargs.items(): | |
| if v is None: | |
| continue | |
| if isinstance(v, torch.Tensor): | |
| v = v.item() | |
| assert isinstance(v, (float, int)) | |
| self.meters[k].update(v) | |
| def __getattr__(self, attr): | |
| if attr in self.meters: | |
| return self.meters[attr] | |
| if attr in self.__dict__: | |
| return self.__dict__[attr] | |
| raise AttributeError("'{}' object has no attribute '{}'".format( | |
| type(self).__name__, attr)) | |
| def __str__(self): | |
| loss_str = [] | |
| for name, meter in self.meters.items(): | |
| loss_str.append( | |
| "{}: {}".format(name, str(meter)) | |
| ) | |
| return self.delimiter.join(loss_str) | |
| def synchronize_between_processes(self): | |
| for meter in self.meters.values(): | |
| meter.synchronize_between_processes() | |
| def add_meter(self, name, meter): | |
| self.meters[name] = meter | |
| def log_every(self, iterable, print_freq, header=None, start_iter=0): | |
| i = start_iter | |
| if not header: | |
| header = '' | |
| start_time = time.time() | |
| end = time.time() | |
| iter_time = SmoothedValue(fmt='{avg:.4f}') | |
| data_time = SmoothedValue(fmt='{avg:.4f}') | |
| log_msg = [ | |
| header, | |
| '[{0' + '}/{1}]', | |
| '{meters}', | |
| 'time: {time}', | |
| 'data: {data}' | |
| ] | |
| if torch.cuda.is_available(): | |
| log_msg.append('max mem: {memory:.0f}') | |
| log_msg = self.delimiter.join(log_msg) | |
| MB = 1024.0 * 1024.0 | |
| for obj in iterable: | |
| data_time.update(time.time() - end) | |
| yield obj | |
| iter_time.update(time.time() - end) | |
| if i % print_freq == 0: | |
| try: | |
| total_len = len(iterable) | |
| except: | |
| total_len = "unknown" | |
| if torch.cuda.is_available(): | |
| print(log_msg.format( | |
| i, total_len, | |
| meters=str(self), | |
| time=str(iter_time), data=str(data_time), | |
| memory=torch.cuda.max_memory_allocated() / MB)) | |
| else: | |
| print(log_msg.format( | |
| i, total_len, | |
| meters=str(self), | |
| time=str(iter_time), data=str(data_time))) | |
| i += 1 | |
| end = time.time() | |
| total_time = time.time() - start_time | |
| total_time_str = str(datetime.timedelta(seconds=int(total_time))) | |
| print('{} Total time: {} ({:.4f} s / it)'.format( | |
| header, total_time_str, total_time / len(iterable))) | |
| def setup_for_distributed(is_master): | |
| """ | |
| This function disables printing when not in master process | |
| """ | |
| builtin_print = builtins.print | |
| def print(*args, **kwargs): | |
| force = kwargs.pop('force', False) | |
| # force = force or (get_world_size() > 8) | |
| if is_master or force: | |
| now = datetime.datetime.now().time() | |
| builtin_print('[{}] '.format(now), end='') # print with time stamp | |
| builtin_print(*args, **kwargs) | |
| builtins.print = print | |
| def is_dist_avail_and_initialized(): | |
| if not dist.is_available(): | |
| return False | |
| if not dist.is_initialized(): | |
| return False | |
| return True | |
| def get_world_size(): | |
| if not is_dist_avail_and_initialized(): | |
| return 1 | |
| return dist.get_world_size() | |
| def get_rank(): | |
| if not is_dist_avail_and_initialized(): | |
| return 0 | |
| return dist.get_rank() | |
| def is_main_process(): | |
| return get_rank() == 0 | |
| def save_on_master(*args, **kwargs): | |
| if is_main_process(): | |
| torch.save(*args, **kwargs) | |
| def init_distributed_mode(args): | |
| if args.dist_on_itp: | |
| args.rank = int(os.environ['OMPI_COMM_WORLD_RANK']) | |
| args.world_size = int(os.environ['OMPI_COMM_WORLD_SIZE']) | |
| args.gpu = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK']) | |
| args.dist_url = "tcp://%s:%s" % (os.environ['MASTER_ADDR'], os.environ['MASTER_PORT']) | |
| os.environ['LOCAL_RANK'] = str(args.gpu) | |
| os.environ['RANK'] = str(args.rank) | |
| os.environ['WORLD_SIZE'] = str(args.world_size) | |
| # ["RANK", "WORLD_SIZE", "MASTER_ADDR", "MASTER_PORT", "LOCAL_RANK"] | |
| elif 'RANK' in os.environ and 'WORLD_SIZE' in os.environ: | |
| args.rank = int(os.environ["RANK"]) | |
| args.world_size = int(os.environ['WORLD_SIZE']) | |
| args.gpu = int(os.environ['LOCAL_RANK']) | |
| elif 'SLURM_PROCID' in os.environ: | |
| os.environ['MASTER_PORT'] = '8994' | |
| while 'MASTER_ADDR' not in os.environ or len(os.environ['MASTER_ADDR'].strip()) == 0: | |
| os.environ['MASTER_ADDR'] = subprocess.check_output('sinfo -Nh -n %s | head -n 1 | awk \'{print $1}\'' % os.environ['SLURM_NODELIST'], shell=True, ).decode().strip() | |
| time.sleep(1) | |
| print(os.environ['MASTER_ADDR']) | |
| args.world_size = int(os.environ['SLURM_NPROCS']) | |
| args.rank = int(os.environ['SLURM_PROCID']) | |
| args.gpu = args.rank % torch.cuda.device_count() | |
| args.local_rank = args.gpu | |
| os.environ['LOCAL_RANK'] = str(args.gpu) | |
| os.environ['WORLD_SIZE'] = str(args.world_size) | |
| os.environ['RANK'] = str(args.rank) | |
| else: | |
| print('Not using distributed mode') | |
| setup_for_distributed(is_master=True) # hack | |
| args.distributed = False | |
| return | |
| args.distributed = True | |
| torch.cuda.set_device(args.gpu) | |
| args.dist_backend = 'nccl' | |
| print('| distributed init (rank {}): {}, gpu {}'.format( | |
| args.rank, args.dist_url, args.gpu), flush=True) | |
| torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url, | |
| world_size=args.world_size, rank=args.rank) | |
| torch.distributed.barrier() | |
| setup_for_distributed(args.rank == 0) | |
| def init_distributed_mode1(args): | |
| if args.dist_on_itp: | |
| args.rank = int(os.environ['OMPI_COMM_WORLD_RANK']) | |
| args.world_size = int(os.environ['OMPI_COMM_WORLD_SIZE']) | |
| args.gpu = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK']) | |
| args.dist_url = "tcp://%s:%s" % (os.environ['MASTER_ADDR'], os.environ['MASTER_PORT']) | |
| os.environ['LOCAL_RANK'] = str(args.gpu) | |
| os.environ['RANK'] = str(args.rank) | |
| os.environ['WORLD_SIZE'] = str(args.world_size) | |
| # ["RANK", "WORLD_SIZE", "MASTER_ADDR", "MASTER_PORT", "LOCAL_RANK"] | |
| elif 'RANK' in os.environ and 'WORLD_SIZE' in os.environ: | |
| args.rank = int(os.environ["RANK"]) | |
| args.world_size = int(os.environ['WORLD_SIZE']) | |
| args.gpu = int(os.environ['LOCAL_RANK']) | |
| elif 'SLURM_PROCID' in os.environ: | |
| args.rank = int(os.environ['SLURM_PROCID']) | |
| args.gpu = args.rank % torch.cuda.device_count() | |
| else: | |
| print('Not using distributed mode') | |
| setup_for_distributed(is_master=True) # hack | |
| args.distributed = False | |
| return | |
| args.distributed = True | |
| torch.cuda.set_device(args.gpu) | |
| args.dist_backend = 'nccl' | |
| print('| distributed init (rank {}): {}, gpu {}'.format( | |
| args.rank, args.dist_url, args.gpu), flush=True) | |
| torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url, | |
| world_size=args.world_size, rank=args.rank) | |
| torch.distributed.barrier() | |
| setup_for_distributed(args.rank == 0) | |
| class NativeScalerWithGradNormCount: | |
| state_dict_key = "amp_scaler" | |
| def __init__(self, args): | |
| self._scaler = ShardedGradScaler(enabled=args.precision in ["fp16"]) | |
| def __call__(self, loss, optimizer, model, clip_grad=None, parameters=None, create_graph=False, update_grad=True): | |
| if update_grad: | |
| self._scaler.scale(loss).backward(create_graph=create_graph) | |
| if clip_grad is not None: | |
| assert parameters is not None | |
| self._scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place | |
| # norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad) | |
| norm = model.clip_grad_norm_(clip_grad) | |
| else: | |
| raise NotImplementedError("please set clip_grad to a very large value if you do not want to clip.") | |
| self._scaler.unscale_(optimizer) | |
| norm = get_grad_norm_(parameters) | |
| self._scaler.step(optimizer) | |
| self._scaler.update() | |
| else: | |
| with model.no_sync(): | |
| self._scaler.scale(loss).backward(create_graph=create_graph) | |
| norm = None | |
| return norm | |
| def state_dict(self): | |
| return self._scaler.state_dict() | |
| def load_state_dict(self, state_dict): | |
| self._scaler.load_state_dict(state_dict) | |
| def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor: | |
| if isinstance(parameters, torch.Tensor): | |
| parameters = [parameters] | |
| parameters = [p for p in parameters if p.grad is not None] | |
| norm_type = float(norm_type) | |
| if len(parameters) == 0: | |
| return torch.tensor(0.) | |
| device = parameters[0].grad.device | |
| if norm_type == inf: | |
| total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters) | |
| else: | |
| total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type) | |
| return total_norm | |
| def save_model(output_dir, args, epoch, iteration, model, optimizer, loss_scaler, dataset_state): | |
| save_dir = os.path.join(output_dir, f"epoch_{epoch}_iter_{iteration:09d}") | |
| os.makedirs(save_dir, exist_ok=True) | |
| with FSDP.state_dict_type(model, StateDictType.SHARDED_STATE_DICT): | |
| to_save = { | |
| "model": model.state_dict(), | |
| "optimizer": optimizer.state_dict(), | |
| "iter": iteration, | |
| "epoch": epoch, | |
| "scaler": loss_scaler.state_dict(), | |
| "args": args, | |
| "dataset_state": dataset_state, | |
| } | |
| save_path = os.path.join( | |
| save_dir, | |
| f"checkpoint.{dist.get_rank():05d}-of-{dist.get_world_size():05d}.pth", | |
| ) | |
| torch.save(to_save, save_path) | |
| if args.save_consolidated: | |
| mp_rank = fs_init.get_model_parallel_rank() | |
| mp_world_size = fs_init.get_model_parallel_world_size() | |
| consolidated_model_save_path = os.path.join( | |
| save_dir, | |
| f"consolidated.{mp_rank:02d}-of-{mp_world_size:02d}.pth", | |
| ) | |
| with FSDP.state_dict_type( | |
| model, | |
| StateDictType.FULL_STATE_DICT, | |
| FullStateDictConfig(rank0_only=True, offload_to_cpu=True), | |
| ): | |
| save_dtype = { | |
| "fp16": torch.float16, | |
| "bf16": torch.bfloat16, | |
| "tf32": torch.float32, | |
| }[args.precision] | |
| consolidated_model_state_dict = { | |
| k: v.to(save_dtype) for k, v in model.state_dict().items() | |
| } | |
| if fs_init.get_data_parallel_rank() == 0: | |
| torch.save(consolidated_model_state_dict, consolidated_model_save_path) | |
| # remove previous ckpts | |
| ckpts = glob.glob(os.path.join(output_dir, "iter_*")) + glob.glob(os.path.join(output_dir, "epoch_*")) | |
| ckpts.sort() | |
| if len(ckpts)>2 and not args.keep_all: | |
| for ckpt in ckpts[:-2]: | |
| print('del', ckpt) | |
| os.system(f'rm {ckpt} -rf') | |
| def load_model(args, model, optimizer, loss_scaler): | |
| start_iter = 0 | |
| start_epoch = 0 | |
| if args.auto_resume: | |
| ckpt_dirs = glob.glob(os.path.join(args.output_dir, "iter_*")) + glob.glob(os.path.join(args.output_dir, "epoch_*")) | |
| ckpt_dirs.sort() | |
| if len(ckpt_dirs) > 0: | |
| args.resume = ckpt_dirs[-1] | |
| if args.resume: | |
| print("Resume checkpoint %s" % args.resume) | |
| local_checkpoint_path = os.path.join( | |
| args.resume, | |
| f"checkpoint.{dist.get_rank():05d}-of-{dist.get_world_size():05d}.pth", | |
| ) | |
| with load_with_process_group(fs_init.get_data_parallel_group()): | |
| checkpoint = torch.load(local_checkpoint_path, map_location='cpu') | |
| with FSDP.state_dict_type(model, StateDictType.SHARDED_STATE_DICT): | |
| model.load_state_dict(checkpoint['model']) | |
| optimizer.load_state_dict(checkpoint['optimizer']) | |
| loss_scaler.load_state_dict(checkpoint['scaler']) | |
| start_iter = int(checkpoint['iter']) + 1 | |
| if 'epoch' in checkpoint: | |
| start_epoch = int(checkpoint['epoch']) | |
| return start_epoch, start_iter | |
| def all_reduce_mean(x): | |
| world_size = get_world_size() | |
| if world_size > 1: | |
| if isinstance(x, torch.Tensor): | |
| x_reduce = x.clone().cuda() | |
| else: | |
| x_reduce = torch.tensor(x).cuda() | |
| dist.all_reduce(x_reduce) | |
| x_reduce /= world_size | |
| return x_reduce.item() | |
| else: | |
| return x | |
| def add_weight_decay(model, weight_decay=1e-5, skip_list=()): | |
| decay = [] | |
| no_decay = [] | |
| for name, param in model.named_parameters(): | |
| if not param.requires_grad: | |
| continue # frozen weights | |
| #if len(param.shape) == 1 or name.endswith(".bias") or name in skip_list: | |
| if name.endswith(".bias") or name.endswith("norm.weight"): | |
| no_decay.append(param) | |
| else: | |
| decay.append(param) | |
| return [ | |
| {'params': no_decay, 'weight_decay': 0.}, | |
| {'params': decay, 'weight_decay': weight_decay}] | |
| class default_tensor_type: | |
| _tensor_type_stack = [(torch.float, "cpu")] | |
| def __init__( | |
| self, | |
| dtype: Optional[torch.dtype] = None, | |
| device: Optional[str] = None, | |
| ) -> None: | |
| # Only limited combinations are supported. | |
| assert device is None or device in ["cpu", "cuda"] | |
| assert dtype is None or dtype in [torch.float, torch.bfloat16, torch.half] | |
| self.dtype, self.device = dtype, device | |
| def __enter__(self) -> None: | |
| dtype, device = self.dtype, self.device | |
| if dtype is None: | |
| dtype = default_tensor_type._tensor_type_stack[-1][0] | |
| if device is None: | |
| device = default_tensor_type._tensor_type_stack[-1][1] | |
| default_tensor_type._tensor_type_stack.append((dtype, device)) | |
| # We use all 3 calls since the new apis (set_default_device, set_default_dtype) | |
| # seems to be ineffective sometimes (e.g., set_default_device is ineffective to | |
| # torch.Tensor calls). | |
| torch.set_default_tensor_type(default_tensor_type.get_tensor_type(dtype, device)) | |
| torch.set_default_device(device) | |
| torch.set_default_dtype(dtype) | |
| def __exit__( | |
| self, | |
| exc_type: Optional[type[BaseException]], | |
| exc_val: Optional[BaseException], | |
| exc_tb: Optional[TracebackType], | |
| ) -> None: | |
| default_tensor_type._tensor_type_stack.pop() | |
| dtype, device = default_tensor_type._tensor_type_stack[-1] | |
| torch.set_default_tensor_type(default_tensor_type.get_tensor_type(dtype, device)) | |
| torch.set_default_device(device) | |
| torch.set_default_dtype(dtype) | |
| def get_tensor_type(dtype: torch.dtype, device: str) -> Any: | |
| return { | |
| (torch.float, "cpu"): torch.FloatTensor, | |
| (torch.bfloat16, "cpu"): torch.BFloat16Tensor, | |
| (torch.half, "cpu"): torch.HalfTensor, | |
| (torch.float, "cuda"): torch.cuda.FloatTensor, | |
| (torch.bfloat16, "cuda"): torch.cuda.BFloat16Tensor, | |
| (torch.half, "cuda"): torch.cuda.HalfTensor, | |
| }[(dtype, device)] | |