## Set Environment import os from pdf2image import convert_from_path import cv2 import base64 import numpy as np import numpy as np from PIL import Image import json from anthropic import Anthropic, Client import gradio as gr ## Set Environment os.system('python -m venv env') os.system('source env/bin/activate') ## Install poppler in os import os os.system('apt-get update') os.system('sudo apt-get install poppler-utils') ## The rest of your app.py code goes here def get_base64_encorded_image(image_path): with open(image_path, "rb") as image_file: binary_data = image_file.read() base64_encorded_data = base64.b64encode(binary_data) base64_string = base64_encorded_data.decode('utf-8') return base64_string ## Process pdf def convert_pdf_to_image(pdf_path): # Convert PDF to images pages = convert_from_path(pdf_path, dpi=400) # Save images as PNG files for i, page in enumerate(pages): page.save(f'page_{i}.png', 'PNG') print(f"Converted {len(pages)} pages to images.") return pages ## Image process Subprocess - De-stamp def destamp_image(img_path): bgr_img = cv2.imread(img_path) hsv_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2HSV) # Convert the BGR image to grayscale gray_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2GRAY) # HSV ragne: (0-180, 0-255, 0-120) # for character black color: # H: 0-180, # S: 0-255 , # V: 0-120 , lower_black = np.array([0,0,0]) upper_black = np.array([180,255,120]) mask = cv2.inRange(hsv_img, lower_black, upper_black) deRed_img = ~mask # Single channel image # thresholding -2 ret, threshold_img_2 = cv2.threshold(deRed_img, 120, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU) # Desired shape: (x, y, 1) new_shape = (threshold_img_2.shape[0], threshold_img_2.shape[1], 1) # Resize using numpy.resize() result_img = np.resize(threshold_img_2, new_shape) print(f"result_img.shape: {result_img.shape}") #cv2.imshow(result_img) #save result_img result_filepath="result_img_0.png" cv2.imwrite(result_filepath, result_img) return result_filepath def extract_image_table(image_path): # extract table information response = {} response = extract_table_info(image_path) # Get text element from response check_response(response) # Extract response.content[0].text json_data = extract_json(response) #type(json_data) = "dict" print(f"json_data: {json_data}") return json_data ## Extract Table Information def extract_table_info(image_path): my_api_key = os.getenv('ANTHROPIC_API_KEY') # Claude client = Anthropic(api_key=my_api_key) # Pass the API key here MODEL_NAME = "claude-3-5-sonnet-20240620" #Do ascending sort with index of value of "代碼" for all the rows in each section. If there is "X" or "x" in "代碼", treat it as "9". message_list = [ { "role": "user", "content": [ {"type": "image", "source": {"type": "base64", "media_type": "image/png", "data": get_base64_encorded_image(image_path)}}, { "type": "text", "text": """ You are analyzing an Financial Statement in traditional Chinese. Please extract all the information of the statement image, keep the context in Traditional Chinese without translation. Extract information row by row, and cell by cell. Keep document title, header, date, currency, section header, summary, footer, ... as part of the information. OCR all the cells precisely with the best accuracy. Any Chinese character, if you can not make the best guess, please return "?". Do not ignore it. Do not do any correction with the content of the cell related with "代碼", even it is not 100% correct from your experience. Keep as what it is. Makd sure the length of the string of each cell is same as the image. Save all the information as a markdown table. Keep alignment of each column with the image. Repsonse as below structure: ... ... ... """ } ] } ] # Update how the API is called response = client.messages.create( model=MODEL_NAME, max_tokens=3072, # limit the amount of response information messages=message_list, temperature=0.6, extra_headers={"anthropic-beta": "max-tokens-3-5-sonnet-2024-07-15"} # Changed to a dictionary ) tokens = response.usage.output_tokens print(f"Generated Tokens: {tokens}") print(f"Response: {response}") return response ## Check Response def check_response(response): # Check the type and content of the response print(type(response.content)) print(response.content) # Assuming the text content is in the first element of the list if isinstance(response.content, list) and response.content: content_text = response.content[0].text #print(json.dumps(content_text, sort_keys=True, indent=4)) else: print("Unexpected response format. Unable to extract text.") return None ## Extract markdown data def extract_markdown(response): response_text = response.content[0].text # Access the 'text' attribute of the TextBlock object # Try to find the start and end of the JSON object more robustly # skip mark_start = response_text.find("")+6 # Skip the tag mark_end = response_text.find("") # Include the closing brace print(f"mark_start: {mark_start}") print(f"mark_end: {mark_end}") # Check if valid start and end indices were found if mark_start >= 0 and mark_end > mark_start: mark_data = response_text[mark_start:mark_end] print(f"mark_data: {mark_data}") return mark_data else: print("Could not find valid Markdown object in response.") return ## Extract Json data def extract_json(response): response_text = response.content[0].text # Access the 'text' attribute of the TextBlock object # Try to find the start and end of the JSON object more robustly # skip json_start = response_text.find("")+6 # Skip the tag json_end = response_text.rfind("") # Include the closing brace # Check if valid start and end indices were found if json_start >= 0 and json_end > json_start: try: return json.loads(response_text[json_start:json_end]) except json.JSONDecodeError as e: print(f"Error decoding JSON: {e}") print(f"Problematic JSON string: {response_text[json_start+1:json_end]}") return {response_text[json_start+1:json_end]} else: print("Could not find valid JSON object in response.") return ## Convert json to Dataframe ## Convert to csv ## Process PDF def pipeline(pdf_path): pages = convert_pdf_to_image(pdf_path) print(f"pages: {pages}") destamp_img = destamp_image("page_0.png") response = {} response = extract_table_info(destamp_img) check_response(response) mark_data = extract_markdown(response) #json_data = extract_json(response) return len(pages), destamp_img, mark_data ## Gradio Interface title = "Demo: Financial Statement(PDF) information Extraction - Traditional Chinese" description = """Demo pdf, either editable or scanned image, information extraction for Traditional Chinese without OCR""" examples = [['text_pdf.pdf'], ['image_pdf.pdf']] pdf_file = gr.File(label="Upload PDF", type="filepath") pages = gr.File(label="Pages", type="filepath") num_pages = gr.Number(label="Number of Pages") destamp_img = gr.Image(type="numpy", label="De-stamped Image") #json_data = gr.JSON(label="JSON Data") mark_data = gr.Markdown(label="Markdown Data") app = gr.Interface(fn=pipeline, inputs=pdf_file, outputs=[num_pages, destamp_img, mark_data], title=title, description=description, examples=examples) app.queue() app.launch(debug=True, share=True) #app.launch()