Spaces:
Sleeping
Sleeping
File size: 1,338 Bytes
10ade7c 5e6a1ff 10ade7c 5e6a1ff 10ade7c 5e6a1ff 10ade7c 5e6a1ff 10ade7c 5e6a1ff 10ade7c 5e6a1ff 10ade7c 5e6a1ff 10ade7c 5e6a1ff 10ade7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import gradio as gr
from huggingface_hub import InferenceClient
# Initialize Hugging Face client with your model
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
def respond(
message,
history,
system_message,
max_tokens,
temperature,
top_p,
):
# Prepare messages for the API call
messages = [{"role": "system", "content": system_message}]
messages.append({"role": "user", "content": message})
# Make API call without streaming
response = client.chat_completion(
messages=messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
stream=False, # Streaming disabled
)
# Extract the response content
response_text = response.choices[0].message['content']
return response_text # Directly return the response text
# Gradio interface setup
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
)
if __name__ == "__main__":
demo.launch()
|