|
""" |
|
import gradio as gr |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
# Load your fine-tuned model and tokenizer |
|
model_name = "crystal99/my-fine-tuned-model" |
|
model = AutoModelForCausalLM.from_pretrained(model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
# Define the text generation function |
|
def generate_text(prompt): |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
outputs = model.generate(inputs['input_ids'], max_length=100, num_return_sequences=1) |
|
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=False) |
|
return generated_text |
|
|
|
# Set up the Gradio interface |
|
iface = gr.Interface(fn=generate_text, inputs="text", outputs="text", title="Text Generator using Fine-Tuned Model") |
|
|
|
# Launch the Gradio interface |
|
iface.launch() |
|
""" |
|
|
|
import gradio as gr |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
|
|
model_name = "crystal99/my-fine-tuned-model" |
|
model = AutoModelForCausalLM.from_pretrained(model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
model.to(device) |
|
|
|
|
|
def generate_text(prompt): |
|
|
|
with torch.no_grad(): |
|
inputs = tokenizer(f"<|STARTOFTEXT|> <|USER|> {prompt} <|BOT|>", return_tensors="pt").to(device) |
|
outputs = model.generate(inputs['input_ids'], max_length=100, num_return_sequences=1, do_sample=False) |
|
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=False) |
|
result2 = generated_text.split("<|ENDOFTEXT|>") |
|
finalRes = result2[0].split("<|BOT|>") |
|
print(generated_text) |
|
return finalRes[-1] |
|
|
|
|
|
iface = gr.Interface(fn=generate_text, inputs="text", outputs="text", title="Text Generator using Fine-Tuned Model") |
|
|
|
|
|
iface.launch() |
|
|